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Résumé

A partir des premiers principes de la Mécanique Statistique de Non-Equilibre, nous
avons entrepris la dérivation d'une équation cinétique pour une particule (-'témoin') en
interaction faible avec un grand réservoir a 1'équilibre thermique. Les deux sous-systémes sont
soumis a un champ de force externe. Ce texte commence par une présentation des méthodes
de la Mécanique Statistique permettant d'obtenir 1'équation cinétique. La théorie de
perturbation standard fournit, & partir de I'équation de Liouville, une équation maitresse
généralisée ('Generalized Master Equation'); dés lors, une équation du type Fokker-Planck
suit dans l'approximation "markovienne". Des formules explicites générales sont présentées
pour les coefficients de cette équation en fonction des parameétres physiques et notamment du
champ extérieur.

Le formalisme est alors appliqué au cas particulier d'un plasma électrostatique soumis
a un champ magnétique extérieur B, supposé uniforme. Des nouvelles expressions analytiques
sont obtenues pour les coefficients de diffusion et de dérive, faisant explicitement apparaitre
le champ magnétique ainsi que le potentiel d'interaction électrostatique (a longue portée).

Finalement, le calcul analytique est avancé en considérant de maniere explicite un
potentiel d'interaction de type Debye et un état Maxwellien en arriere plan. Nous obtenons
donc des nouvelles expressions non-dimensionelles pour les corrélations de forces
d'interaction C,,,(v, 7;B) ainsi que pour les coefficients de diffusion D, (v;B).

Finalement, nous discutons leur variation en fonction des paramétres physiques du probléme
(a savoir: le temps, la grandeur du champ magnétique et la vitesse).



Kinetic theory for a test-particle
weakly coupled to
a large heat-bath in equilibrium

- application to magnetized plasma *

loannis Kourakis

June 23, 2002

Abstract

We have considered the derivation from first principles of a kinetic equation for
a test-particle weakly interacting with a large heat-bath in thermal equilibrium.
Both subsystems are subject to an external force field. This text starts with an
outline of the statistical-mechanical methods leading to the kinetic equation. The
Liouville equation leads to a generalized master equation to 2nd order in the “weak”
interaction; a Fokker-Planck-type equation then follows as a “markovian” approxi-
mation. Generic field-dependent formulae for the coefficients in the collision term
are presented.

The formalism is then applied to the model case of a charged test-particle in
an electrostatic plasma in a wuniform magnetic field. Explicit expressions for the
diffusion and drift coefficients are obtained in terms of the (long-range) interaction
potential and the magnetic field.

Finally, we advance the analytical computation by considering Debye-type in-
teractions and a Maxwellian state in the background. Re-scaled (non-dimensional)
expressions are then derived for the two-time force correlations C'| ||(7; field) and
the diffusion coefficients D L) and briefly discussed in terms of their parameters

(namely: time, the magnitude of the magnetic field, velocity).

*Mémoire de DEA en Sciences Physiques; Université Libre de Bruxelles, année académique 2000 -
2001.



1 Introduction

A wealth of physical phenomena have been elucidated since non-equilibrium statistical
mechanics originally provided the necessary framework in an attempt to understand the
role of microscopic collisions on the (irreversible) macroscopic dynamics of matter. In
particular, charged matter (plasma) has always been thought of as a challenging test-
bed for transport theories. Furthermore, in the last few decades, the aim of controlling
thermonuclear fusion for man-oriented applications and the big amount of experimental
research run on fusion devices has provided a vast field of application for plasma transport
theories, as well as a real challenge in terms of demand for theoretical ground for prediction
of measurable quantities (transport coefficients).

However, the kinetic description of plasma is a long-standing, open problem, since
the long-range character of electrostatic interactions makes the standard neutral gas for-
malism, i.e. through Boltzmann-type theories, inappropriate. A different approach is
therefore needed. Since the original work of Landau a plethora of works have focused on
the kinetic description of plasma, as a step towards theoretical explanation (as well as
experimental manipulation) of plasma transport phenomena. Outstanding contributions
have been the works of Vlasov, who was the first to include the reciprocal interaction
between a particle and the mean surrounding field in a “self-consistent” description and
Balescu-Lenard-Guernsey, who went one step further by including collective (three-body)
effects in an elegant description [1]. The so-called Brussels’ school has then provided
a new formal framework and microscopic theories of dissipative phenomena were often
associated to master equations.

A typical paradigm of such a theory is the relaxation of a small subsystem close to
(but not at) equilibrium in (weak) interaction with a heat bath. The evolution of the
system is described by a (non-Markovian) generalized master equation. The standard
procedure consists in evaluating the kernel of the master equation, by adopting some
‘markovianization’ assumption. This is not an easy task, as one has to take into account
inter-particle interactions (collisions) on one hand, and also the inevitable influence of
external force fields, if such are present, on particle trajectories between collisions. As
the latter has often been neglected in collisions terms presented in literature, we have
undertaken this work in order to stress the influence of the magnetic field on the transport
properties of plasma.

The system considered in our work consists of a (or ‘a few’) test-particle(s) injected
in a neutral background heat-bath (‘reservoir’ ‘R’) in thermal equilibrium. Both sub-
systems are embedded in an external field; they are assumed to be initially decorrelated
and interactions are taken to be “weak”. In a generic manner, the formalism presented

in the text applies to any dynamical problem® obeying the above description, that is for

'provided that a given analytic solution of the linear (or linearized) zeroth-order (single-particle)



a specific choise of (a) problem of motion (in a force field)! and (b) inter-particle (long-
range) interaction law. In this work we will:

(i) outline the derivation of a kinetic equation, from first principles, describing the evolu-
tion in time of the test-particle distribution function f(v;t),

(ii) present analytic expressions for the coefficients in the collision term, in terms of the
external field, the interaction potential V'(r) and the field-particle equilibrium distribution
function ¢,,(v1) and

(iii) explicitly evaluate the diffusion coefficients, in the case of plasma embedded in an
external magnetic field, taken to be uniform for simplicity. Considering Debye-type in-
teractions and a Maxwellian distribution for the heat bath, the diffusion coefficients are
evaluated and studied in terms of the magnitude of the external field.

Let us remark that the system considered here will be taken to be spatially homoge-
neous, so that f = f(v). The generalization of the formalism to a non-uniform plasma
in the presence of an external field has been considered elsewhere [2]; it is the object of
current research work which will be presented later [3].

The figures are attached in the end of the text.

2 The model

We consider a test-particle (t.p.) ‘Y’ surrounded by (and weakly coupled to) a homo-
geneous reservoir R = {1,2,...,N}. X = (x,v) = (xx(t),vs(t)) and Xg = {X;} =
(x;(t), vj(t)) will denote the coordinates of the test- (£—) and reservoir- (R—) particles

respectively.

2.1 Equation of motion
The equations of motion for the t.p. read:
X=vV; v =Fo(x,v) + AFint(x, v; Xg; 1) (1)

The force Fo(x, v) is due to the external field; in the case of an electrostatic plasma, i.e.
N + 1 particles of species o' € {a;} = {e,4,...} (= electrons, ions, ...) (charge e}, mass
m$, j=1,2,.., N, ¥)) in a uniform magnetic field, it represents the Lorentz force
e
Fi(v)= “(v x B) )

The interaction force

Fint(x,v; Xg;t) = ——ZV — x;/)

problem of motion is known (in the form of (4) in the text); for the sake of reference, such cases include
motion in (i) a magnetic field (ii) a harmonic potential field (oscillator models) and the limit case of (iii)

no field (free motion).



represents the sum of random interactions between ¥ and the heat bath (assumed to be in

equilibrium); it can be proved to be a stationary Gaussian process with zero mean-value.

2.2 Single-particle dynamics

In the following we shall assume that the zeroth-order problem of motion:

Z (j> - (%Fo?x,w) @)

yields a known analytic solution in the form:

v(t) = M({t)x+N'(t)v
x(1) :x+Abﬂww:Nwﬁ+N@v

x(t) \ [ M(t) N(¢) x\ _ X
( i) ) - ( M) N ) (o)== () .
2 with the initial conditions: {x(0),v(0)} = {x, v} implying E(t = 0) = L.

As obvious, the following group properties have to be respected:

i.e.

(7) E(t+t) =E(t) E(t)
(i)  E () = B(-t) Vt e R (5)

implying a set of relations to be satisfied by the d x d matrices in (4):

N/(H)N'(t') = N'(t + t') Vit € R
N(t") + N(N'(t') = N(t + t) Vit e R (6)
Note that, in general:
N()N({t) #N(E+t) Vi,t'eR
Also:
N ') =N'(—t) VteR
(vet N™H(2) # N(—1)).

’In a d—dimensional problem, {M(t),N(¢)} are d x d matrices whose form depends on the particular

aspects of the dynamical problem taken into consideration; properly speaking, one has
822 (t) 822 (1)
( M;;(t)  Ni;(t) ) _ ( Tox o >
- 0 0
MY(H) Ny(0) 20w )

oz ; Ovj

thus (4) may be viewed as a linearized (in z;,v;) solution of the - possibly nonlinear - ‘free’ (i.e. colli-

sionless) motion problem.



2.3 “Free” motion in a magnetic field

Let us consider the simple case of a uniform external magnetic field in the 2 direction.

The zeroth-order (~ A°) problem of motion yields the well-known (helicoidal) solution:

x(t) = x(0) + N(¢) v(0) v(t) = R(t) v(0)
e x(t)\ (I N@)) (x
i) = (o win) () "
where cos{it s sinQt 0
R(t)=N'(t)=| —s sinQt cosQt 0
0 0 1
. sin Ot s (1—cosQt) 0
N(#) = / d'RO(H) = QL | s (cosQt—1)  sinQt 0 (8)
' 0 0 Ot

(ie. M =1 M =0, N =R(),cf. (4)); Q is the gyro-frequency of particle j (of

species « € {e, 1, ...}, mass m,, charge e,):

j = ool )

Mg C

Q=0

and s/ = sgn(e;) = £1. Relations (6) are satisfied, as may easily be checked; furthermore,
relations (8) satisfy:
R(—t) =R"(t),  N(-t)=-N"(1)

Remember that N (¢ = 0) = 0 and N'(¢t = 0) = I. Also note that, ‘switching off’ the field
(i.e. for 2 = 0) we obtain N = ¢I and N’ = I and thus recover the free motion (Landau)

limit.

3 Statistical formulation - the kinetic equation

Let p = p({X,Xgr};t) (F = F(Xg)) be the total (reservoir) phase-space distribution
function (df), normalized to unity: [dXp =1 ([dXgrF = 1); the subscript will be
omitted in the following where ¥ is understood.

The equation of continuity in phase space reads:

dp dp 0,1
- 4 (T F. = 1
at +VJan + 8V_](m Jp) 0 ( 0)

where a summation over j (= 1,2, ..., N,X) is understood.



3.1 Reduction of the Liouville equation - BBGKY hierarchy

The standard procedure consists in defining appropriate ‘s-body’ reduced distribution

functions (rdf), among which the (1—body-) test-particle rdf:
fxvit) = (I pn= [ dXrp
R

and then appropriately integrating the N —particle Liouville equation in order to obtain
a hierarchy of coupled equations of evolution of the rdf’s. Since this is more or less a
standard procedure [4], the details will be omitted here 3. In order to obtain an equation
of evolution for f(t), the BBGKY hierarchy of equations thus obtained can be truncated
to 2nd order in A by assuming interactions to be weak (i.e. A < 1). One thus obtains the

system:

(0 — LE) f(X;1) = A2 /dX1 Lr g(X,Xq;t) + OO
(0, — Ly — Ly) 9(X, Xq5t) = ALy Fi(X1) f(X) + O(\?) (11)

where L) is the “free” Liouvillian in the field:

o - 1 0

U'Z_Vja—xj_ﬁja—vj(Fo') (12)

and L; = Ly, is the binary interaction operator L; = Ls; where:

1i 18)

Ly = ~Fun (b = ) ( (13)

m; Ov; mj Ov;
(1,7 € {3,1%}). As obvious, f = f(X%t), Fl(Xl%r) and f,(X%, X¢';t) denote the ¥—1-
body, R—1-body and (1% + ¥%)—2-body rdf’s respectively and g = ¢(X*,X§';t) is the

‘two-body’ (1% + %) correlation function:
9(X, Xy5t) = fo(X XT3 ) = F(XT) (X% 1)

(in a multi-component plasma, a summation over particle species o/ is to be understood
in the rhs of (11)). Note that the mean-field (Viasov) term, in order \', disappears since
we have assumed the reservoir to be in a homogeneous equilibrium state F' = ny qﬁg‘;(vl)

(essentially a Maxwellian state ¢prqz(v1)).

3.2 The generalized master equation

In order to obtain a closed equation for f, the system of equations (11) can be decoupled

by solving the second equation and then substituting into the first. Neglecting correlations

31n fact, the precise formulation in a test-particle problem is quite similar but not identical to the one
found in [4], since one must distinguish s—body rdf’s where the t.p. is, or is not, included. The details
will be provided in [3]



at t =0, f is found to obey a (non-markovian) generalized master equation (GME) :
t
0f(x,vit) = Lo f(x,vit) + A n [ dr [ dxydvy LiUO() Ly dog(va) Fx,vit=7) (14)
0

(n=ny = ﬁ‘ﬁi is the particle density; a summation over species o' is understood) All

operators were defined in the previous paragraph. By
UO(t) = Exp(Lot)

we denote the ‘free’ (collisionless) Liouville time-evolution operator (‘propagator’).

3.3 Markovian approximation

Adopting a standard ‘markovian’ approximation, which consists in substituting with the

zeroth-order solution - assuming, that is, that

fit—1)=e o f(t) = U(O)(—T) f(t)

is sufficient to this order - we obtain the markovian master equation:

0f—ILof=n /Ot dT/dX1 dvy Ly UO (1) Ly oy (v1) UO (1) f (15)

(f = f(v;t)); the ‘tag’ A? in the rhs will be omitted for simplicity. The asymptotic
limit, ¢ — oo, is most often considered in literature, essentially yielding time-independent

coefficients in the kinetic equation.

4 Kinetic equation

One is now left with the task of evaluating the kernel in the collision integral (rhs) of
the master equation, taking into account the specific features of the particular physical
problem considered. This is done by explicitly substituting from (13) into (15) and then
evaluating the action of the propagator U (¢) on functions of the phase-space variables
X ={x,v} e.g.

UO ) f(X) = U0 () f(X;0) = f(X;t) = f(X(0);1) = f(X(—t);0) = f(X(-t))

(this is actually a consequence of the Liouville theorem [4], [5]) * and so forth. A key

element often neglected in the past is the fact that U® (¢) does not commute with phase-

il
ov?

one encounters the expression:

space gradients .; more precisely, when dealing with the exact form of the kernel,

0
8vi

“The propagator formalism is exhaustively studied in [ref. Misguich-Balescu...]. A brief but concise

Dy.(t) =Ut)—U(-t) i=X, 1%

discussion of the theory can be found in [1], [4].



which can be evaluated in terms of the solution (4) of the dynamical problem; we find:

0 0
8Xi 8Vi
in full agreement with the results in [6]; a similar expression can be obtained for the

Dy, (1) = Ni" (1) 5~ +N{' (¢) (16)

space-gradient %.

The matrices in (16) (IN;(¢),...) contain the signature of the external field, since they
have been defined through the solution of the specific dynamical problem (see in Section
2). The force field considered is thus seen to enter, just as expected, the collision term
of the kinetic equation in an explicit manner, and this is true for any specific problem
considered.

4.1 Fokker-Planck-equation

By explicitly evaluating the kernel in (15) we find the 2nd order PDE:

of 1.0f 0. 0
= C{f(v;1)} (17)

(u = m/m¢). Remember that F is the force which is due to the external force field (Fy
in §2.1); once more, don’t forget that the mean-field force (Vlasov term) that one would
expect to see in the lhs of such a kinetic equation cancels once we took the background

to be in homogeneous equilibrium.

The above equation can be cast into the form of a Fokker-Planck-type equation :
2

R = G l) = G (E)
(17-bis)
where A = A(x,v; field) is a 3 x 3 diffusion matriz and F = F(x,v; field) is a 3d

dynamical friction vector defined as:
E = —,U,Cbi + aAij/é’vj (18)

The rhs of this equation is reminiscent of the form of a Fokker-Planck equation; how-
ever, the coefficients in it are not constant, but depend on phase-space variables and on
the external force field.

4.2 Coeflicients

Let us define the two-time interaction-force correlation matrix:

C = (Fine(t) Fine(t2))r
/Fl dx1dvi ¢%(v1) Fine([x(t1) = x1(81)]) Fing(|x(t2) = x1(t2)])
= C(x,V;ty,ts)



and

d = | dxidvi Fine(jx(t1) = x1(t)]) Fine([x(t2) = x1(t2)])
1
96, (v1)
T eq
R,(r) =
= d(x,v;t, 1) (19)
The coefficients in eq. (17) are conveniently expressed in terms of the above quantities:
n (o)
Ax,v) = el dT/Xm/dvl Beq(V1)
Fint (X — X1]) ® Fine(jx(—7) — x1(—=7) )N (7)
n o0 T
= W/o dr C(x,v;t,t —7)N'" (1) (20)
and
n (e.@)
a(X,V) = _W 0 dT/dX]_/dVl ¢eq(V1)
0p(v
Fun (1 — 1)) © Fine((x(—7) — 31 (7)) B (r) 22
Vi
- —i/ood d(x, vit, ¢ —7) (21)
= 2/ dr X, V;t, T

5 Case of interest: electrostatic plasma in a magnetic
field

The results of the previous section are valid, just as such (i.e. precisely eqs. (17), (17-bis),
along with definitions (18) - (21) for the coefficients) upon substitution with the exact

form (8) for the dynamic matrices.

5.1 Plasma kinetic equation

By applying the above results in the magnetized plasma case (considering a uniform

magnetic field along 2), the diffusion matrix is found to be of the form:

D, D, 0
Aty=|D, D, 0 (22)
0 0 D
The test-particle df f(v;¢) is thus found to obey the plasma kinetic equation:
of e of 0? 0? 0?
ot - me (vxB) ov <8v% * 31}5) [DL(V)f] * Ov? [D)(v)/f]
0 0 0
o || = g B 1| = 5 [F ] (23)



This equation (presented in [2]) is formally similar to a linearized form of a kinetic equation
derived in the past [7].
All the coefficients are defined in the following paragraph.

5.2 Plasma coefficients

Notice the particular form of the diffusion matrix D in (22) which reflects the cylindrical-
symmetry of the problem; remember that the celebrated Landau collision term for elec-
trostatic plasma (in no external field) presents a spherical type of symmetry [1]. This
is a manifestation of the Onsager symmetry principle [8], as extensively argued in [1].
Furthermore, as suggested in §5.5-B therein, one would expect D to become diagonal
(in fact proportional to the unit matrix) should the field be “switched off”. One may
straightforward check that our matrix elements defined in the next paragraph do satisfy
this criterion.

The diffusion coefficients are actually all functions of {v,, v} only (remember that
the components v, = (v + v;)l/2
action of a constant Lorentz force; cf. (2), (7), (8)). They are defined by:

D, ) L cos Qor
1 gt o { 201 O }
{ D, } =Y m—g/o dr { {CT"O‘,} } (—s*) 3 sin Qo7 (24)

D; o 1

and v = v, of the velocity are conserved under the

where C’{O‘fh}(vl,vl; Q) are (diagonal) elements of the force-correlation matrix C(r) =
(Fint(t) Fint(t — 7)) g; they come out to be:

C% = ngy (2m)? / dv d)ﬁ‘;(vl) /dk ‘N/,f en Nt (T)om =ikn Nyt (T)01,m k2 (25)

(x € {L,]|}; a summation over n,m is understood) where v; (vy;), i = 1,2, 3 denote the
velocity coordinates of the test- (R-) particle of species ay = o (a1 = o' € {e,i,...})
respectively (the a index will be dropped where obvious). Finally, V}, stands for the

Fourier transform of V'(r):

: et = 7 —ikr(t
=G /dr V(e) &0 . V(e(t) = /dk T e—er(®) (26)

Remember that V =V (|r|) = V(r) implies V = V(|k|) = Vi (s0 Vi = Vi = Vi)

Notice the explicit dependence on the magnetic field through Q = Q¥ (i = £*,1¢)
and also on the form of the reservoir equilibrium d.f. ¢., = ¢4(v1,v)) and the interaction
potential V (r).

In a single species system all coefficients are functions of v — vy = g; one may prove
that

a; = —0A;;/0v; (27)

10



The dynamical friction terms JF; are then given by:

oD oD oD oD
Foo= (w5 o+ 55 Fy= (14 (-5 5+ 52)
x Yy T Yy
oD Mo
F. = (1+“)aTH p=—= (28)

6 Explicit construction of the coefficients for a single-

species plasma

The exact form of the coefficients presented above can be computed once one has chosen a
specific form of interaction potential V' (r) and equilibrium reservoir distribution function
Peq(v1). Once an appropriate reference frame is chosen (see figure 1), the integrals can be

carried out in convenient polar coordinates {k., o, kj} °, {v1,1, 8, v}, so that

2 00 00 00 00
[Tda [Tk [Todn o= n) [T akiky [T dk = (29)
0 0 —00 0 —00

and so forth (note that neither ¢4, nor Vi depend on the angle variable).
The calculation is tedious but straightforward. For the sake of clarity in presentation,
only the final results will be presented in the next two paragraphs. The detailed calculation

is provided in the Appendix [9].

6.1 Maxwellian distribution function

Let us carry out the v;- integration in (25) by assuming ¢., to be a Maxwellian of the

form:

¢Ma:v 7)1 H ¢ _v“ o (30)

1=1,2,3

i / P2 ore .
() = (2et5)'V* = \/7:0_—.1 off =2vfy, =35 Vie{l,2,3} = {z,y,2} "
For a tvcsxfo—temperature plasma (i.e. 0y = 0o = 01, 03 = 0)) we obtain (see in the

Appendix for details):

D,
D, :m—i oryte i/t /dr/ dk |

D

—— (kHT zQUH )2/4

5The angle variable a should not be mistaken for the species ‘tag’ used previously.
6We shall later set T, = T\ = T* for simplicity, i.e.

3 2 _vimw?
Mg \2 _man-w?® 1 1
Bt on) = () e =

2
e thh,a

3
o

—
[\
N

~—

wleo
<

(u =0 in this text).

11



I I Q0 5 cos 2T
e R Jo(2ms sin—20) 4 | (=) S sinQar |4 (31)
@ 1

(a summation over particle species o will be understood wherever o’ appears). Obviously,

m (n) in {m,n} correspond to the upper (lower) i.e. L (||) parts respectively.

6.2 Debye interactions

In fact, relation (31) holds as it stands for any particular form of (long-range) central

interaction potential V' (r). Let us now explicitly consider a Debye potential:

e kpr ~ e? 1 ‘70
V(r) =e*—— Vi =55 =
(== Y N A A o )

(Ap = kp' = (4,?8T") is the Debye length [1]).

The integral(s) in k|, say I,E”L’”} (within brackets in (31)), can now be explicitly eval-

uated (once more, see in the Appendix for details); the calculation yields:

1 .
I Foon
ky

where the functions F' = F{Oi,u}(kb V||, T; aﬁ") are given by:

10 = et

o \/7_T 7 —’U2/g-0‘,

oo B2 12 2 ’ A ~ 1 7~
+% el K1/ > {GSIMU”T (I Fof k1722 F skyvyT) Erfe(sy/o kT + 5 ] )} (32)

| 7
s=+1,—1 2 Vol

k= (KL +kp)'?

and

- the upper (lower) signs corresponding to the L (||)- parts respectively. Erfe(x) is the

complementary error function:
Erfe(x)=1—Erf(z _1——/

The coefficients in (31) i.e. (24) (actually functions of {v, v, t; 0%, aﬁ", Qie"e1 1) now

become:

DJ_ } ;K2 Q g7
Ny t 00 ~0§ o sin® —g— kv, . Q.1
_ Dol 22 /d / dk 2 “
{DZ m? Calor | AT | Le Jo( 0. sin — )
Dy
1
(1 — ﬁ> . =5 sinQ,7 (33)
kp + k7 i 2 )

12



where the functions F' = F{‘i”}(kb V||, T aﬁ") were defined above. Note that the integrand
vanishes at infinity i.e. at k&, — oo (and also at 7 — o0). Futhermore, the limit of the
integrands at k; — 0 is finite (the same holds for 7 — 0).

6.3 Force correlations

Remember that the diffusion coefficients D;;(t) are related to the force correlation func-

tion(s) C,(7) (x =L, ||) through expression (24) above. The correlations C,(7) therefore

read:
Clipy = 20,
al
o kﬁ_ si 2Qa’T k v Q
00 —0] o3~ sin® —§ 11U . aT !
= 4é2 Zna,ez,/o dk, e = % Jo(2 . sin —— ) i
k2 (3/2,1/2}
< k2 4+ k3> 34)

(compare (33) to (24) where F*' is now defined by:

F{Oill} = :l:ﬁqﬁe*ﬁﬁ + % %’ > |:682¢6” (1F2¢°Fs2¢0)) Erfe(d+s @”)} (35)

s=+1,—1

and: )

¢:§ U‘T‘II%J_T, 6||:U||/M
(this is essentially a re-shaped form of (32)). Notice that the correlation function is an
even function with respect to time 7 (as expected!).

One may therefore study the correlations C.(7) in terms of 7, vy, v, and the field
(i.e. Q) and then integrate in 7 to obtain the corresponding expressions for the diffusion
coefficients (as functions of ¢, v, v, ).

Let us point out that all the above expressions are valid for a multi-component («, o/ €
{e,i,...}), two-temperature (T, Tj)) plasma, just as they are. In the following, however,

we shall assume that o = o' and T, = Tj, for the sake of simplicity.

7 Reduced form of the coefficients - variable scaling

(one-component plasma)

Let us try to derive a non-dimensional form of the above coefficients.

In the following, we shall set & = o' and 0, = o] = o in the above formula.
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7.1 Correlations

The integration variable k£ in the previous paragraph can be rescaled to the non-dimensional
variable:
kL

T
2
kD

ko
= — ]_
o, =t

(kp # 0). Relation (34) now becomes:

)1/2

a Fmaz 2 (1—g2) sin? &z 1 1103
Ctipy(r) = 4ne4kD/ dx e (1727 2 (1 - —>

1

Q
JO(2)\ \/x2 - I@L sin 77-) F{LH} (36)

where F' = F(¢(x,7), 7)) is given by:

’ —172 m 2 s P R R
Fip = #vmge™l + 27 3] {6 2N (LF 20" F s260) Erfe(¢+siyp)|  (37)
s=+1,—1

[ts arguments are:

1 . -
qﬁzﬁwp,arx, UHZUHEU”/,/O'”:U”/\/E

Also,

- k w

b =vi /oL =v./Vo, A= ULEDZ"'Z\/iﬁp
Note that \

p=—=(Q7)x
2

Remember that oo = 2kpT,/mq = 205, , is related to the thermal velocity (i.e. the
temperature), Q, = e, B/mgc is the cyclotron (gyroscopic) frequency, kp = %

is the plasma (Langmuir) frequency

. 4me2 1/2
is the Debye wave-number and wy, = (—-2"=) /
) Ma

(so w, = 4/o kp/2). Notice the interplay of collision and magnetic field scales through

)\ ~ Tgyro — UYthermal
~ p—
Tcoll VAlfven

The correlations C(7) are now expressed as a single definite integral in z from 1 to

Tmaz- As a matter of fact, the integral diverges at an initial stage in 7 ~ 0, as one
may readily check by setting 7 = 0 in the above formulae. Nevertheless, the integral
converges everywhere outside an infinitesimal region close to 7 = 0. In fact, a thorough
numerical study of the integrand actually reveals a rapidly convergent character; indeed,
un upper cutoff of k,,,, equal to 5, has been checked and came out to be sufficient above,
say typically, a time threshold 7,,;, equal to 0.01 gyration periods, as the value of the
integral is thus preserved up to a precision of 10=% at least. This divergence is actually
due to the short distance (long wave-number) divergence of the interaction potential V'(r)
(see that the divergence is already present if one sets 7 = 0 in the initial formula (25)),
and therefore reflects the limitations imposed by the weak-coupling (‘no-close-encounter’)

approximation.
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In order to avoid this mathematical divergence, the upper integration limit k,,q, (cf.
old formulae) can be taken, instead of infinity (i.e. Zp = 00) to be equal, say, to the
inverse collision parameter for a 90-degree deflection: Ky = 3kgT/e? (cf. [5], p. 130);

the latter leads to an upper value of the order of T, ~ p~3/2 > 1 :

9
Tmaz = (1 + lﬁz,mx/kQD)l/2 = ... = (1 + 47Tp3)1/2 ~ 3/2\/7_1'p_3/2
e2nl/3
kpT
Essentially, for a given set of parameter values (T, n, mg, e, and B), one has to

where p = < 1 is the plasma parameter.

determine the values of w,, €2 and then A; the above formulae can then be studied as
functions of 7 (once the integration in z is carried out numerically), where all external

parameters enter through w, and €.

7.2 Diffusion coefficients

Once the correlations C'| |(7) are evaluated as a function of 7 (or, rather, Q7), the final
coefficients D, , (t) are then defined as a definite integral in 7 (from 0 to ¢ 7): see
relation (24).

8 Numerical study of the coefficients

8.1 Typical parameter values

Choosing a set of typical values, i.e. a temperature of 7' =10 KeV and a particle density
of n = 10" em™3 = 10* m =3, we obtain a plasma frequency w,, = 5.64 - 10" 57! and a

cyclotron (gyro-) frequency of:
Q,=17610" x B st

(B is expressed in Tesla) implying a plasma parameter of p = 2.5-107% < 1 as well as

Tmaz ~ 2 - 10" > 1. The parameters in the previous paragraphs are thus given by:
A=45x B!

and
¢=(2.25x B™") x (Qr) x z

(B is expressed in Tesla).

TAll quantities are found to converge in the asymptotic limit ¢ — oo.
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8.2 Evolution in time

Let us study the behaviour in time of the force correlations and the diffusion coefficients,
for a fixed set of parameter values (see above). Unless otherwise stated, we shall choose
the magnetic field to be B = 3T (so that A = 1.5).

8.2.1 Force correlations C j(7) vs. T

The force correlations C' (1), C| /() given by (36), (37) are represented in figures 2a,b,
3a,b respectively, as functions of the time-integration variable 7 (cf. (24)) (measured in
gyration periods Qr), for different values of the magnitude of the magnetic field B (~ ).
Correlations are found to decrease fast in time. In both cases, the magnetic field seems
to enhance correlation, since the higher its magnitude B (~ €; cf (9)), the higher the
value of both Cy 3(7); see figures 2a, 3a. Physically speaking, this fact reflects particle
confinement by the magnetic field, since particles ‘stick’ to their helicoidal trajectory
around the magnetic field lines and thus ‘feel’ each other for longer periods of time. Note
that C)(7) decreases faster than C'| (7). Also notice the peaks appearing every gyration
period in the latter (actually the signature of the magnetic field) which are absent from
the former: they are smoothed out in a few gyration periods; compare figures 2b, 3b.
Nevertheless, in both cases, particle interactions seem to be completely decorrelated after
a few gyration periods.

Furthermore, by increasing particle velocity v, v we reduce force correlations faster
. see figure 3a, b. Once again, this is quite expected, since the higher the velocity the less

particles see each other while moving.

8.2.2 Diffusion coefficients Dy, | .1(t) vs. ¢

We saw that the diffusion coefficients D, (t), D/(t), Dy(t) actually correspond to the
surface under the curves C' |(7) vs. 7 multiplying an oscillating function of time (e.g.
definite integrals of C'| , (1) x cosQ7 in 7 and so forth; cf. (24)). Therefore, their
evolution in time, depicted in figures ba, b, ¢ was quite expected: they start from an initial
zero-value and soon evolve towards a final asymptotic value which remains practically
constant after a fews gyration periods. Notice the local ”jumps” every cyclotron period -
absent from Dj(t), since the z—direction (|| B) yields no memory of the field - which are
the consequence of the small peaks in the | —correlations; their influence decreases to
null after a few gyration periods.

Remember that our diffusion coefficients D, (t) are related to the inverse of the time
needed for relaxation towards equilibrium (see, for instance, chapter 3 in [10]). Therefore,
the difference in magnitude between the coefficients (for the same set of physical param-
eters, see e.g. fig. b) seems to point out that collisions along the z—(]| —)direction are

more efficient, since they lead to relaxation faster than the ones on the zy—(L —)plane.
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Figure 6 shows D (t) for different values of the field (i.e. the cyclotron frequency ).
We can see that the asymptotic value of the diffusion coefficients D(t) (as t — oo) depends
rather dramatically on the magnetic field: in fact, the higher the field, the higher the final
value D, (00). 8. We see that the magnetic field favours thermalization (i.e. relaxation of
the distribution function towards a maxwellian state), since it increases the value of D,,
thus reducing relaxation times. Once more, this seems to agree with physical intuition (the
more ‘confined’ the particles, the more they influence each other and the more efficient
collisions are for relaxation); this is nevertheless in contradiction with what has often
been suggested (yet never rigorously studied) in the past (the influence of the magnetic
field on the collision term has always either been under-estimated [11] or deliberately
neglected [12] when discussing the mathematical properties of collision terms as related

to the physical - transport - behaviour of plasma).

9 Conclusion

In conclusion, we have obtained a kinetic equation for a test-particle weakly interacting
with a large heat-bath in thermal equilibrium, focusing on the explicit dependence of the
collision term on the external force field, as well as on the phase-space parameters x, v,
in general.

Furthermore, considering magnetized plasma, we have obtained new expressions for
transport coefficients in terms of physical parameters (density, temperature, magnetic
field magnitude) and velocity components v, v). We have pointed out that the magnetic
field plays a significant role in the value of the diffusion coefficients (and the resulting

transport properties) of plasma.

8The same feature is present in D/ (t), and little less in Dy(t)
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Appendix

We saw that the D, D, and D coefficients appearing in the text are given by the
expressions (24), (25) i.e.

D,
! t / ind ; (e% ; o
DZ _ Z na2 (271')3/ dT/dVl ¢g¢q(v1)/dk Vk2 elannm(T)’Um efzannm(T)vl,m
D o m 0
I

5 (k2 4+ k) cosQor
s%) 5 (k2 + k7) sin Q%7 (38)
K

(_

where, once again, v; (v1;), ¢ = 1,2, 3 denote the velocity coordinates of the test-particle
(reservoir-particle) of species ay = a (ay = o' € {e, i, ...}) respectively (the a index will
be dropped where obvious) and Vj, stands for the Fourier transform of the (long-range)
interaction potential, defined in (26).

Remember that the dynamical friction vector F is also defined through the above

coefficients (see in §5.2).

A Eliminating integrals... - from (24) to (31)

A.1 The velocity integration | d3vy

The v;- integration in (38) can be carried out at this stage, once one assumes an analytic
form for the equilibrium reservoir distribution function (df) ¢e,(v1) °. Here, it will be

explicitly taken to be a Maxwellian of the form (30) i.e.:

0Srae(1) = |1 pUre) o=t /ot (39)

1=1,2,3
' P N1/2 _ r_ r2 ooy — :
(QSSZ) = (2:7;‘(3)) / = W = 7:09(,; O'Za = 2,Uztitth = g VZ € {1,2,3} = {x,y,Z},

let us assume here that a‘f" = ag" =0, 03‘3" = 0); the summation over particle species o
is omitted in the following).
By substituting from (39) into (38) we obtain:

D,

D
— nal /dT/dk/dvl |: vll/a :| —ian,‘i‘,,n(T)vl,m ‘7]{)2 6iannm(T)vm

9Remember that, actually the homogeneous equilibrium df can be any function of {v,, |}
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5 (k2 + k) cosQr
(—s) & (k2 +k;) sinQr
12
' ! ] 2 o . o ~ )
- :;12 (27T)3/0 dr /dk H|:/ dvl,i QSSZ) 671)1,1,/0-1, eflanm‘ (T)Ul,i:| ‘/k? eanNnm(T)Um
5 (k24 k) cosQr
(—s) 2 (k2 +k2) sinQr
%

/dvlzd)o e vll/al e—zp 111,:| V2 1PmUm

= 2% (2m) / ar [ di Il
5 (k24 k2) cosQr
(—s) 5 (k2 +k2) sinQr (40)
k2
where we defined: k,N? = pl (3 is either o or o/; a summation over m is understood

where appropriate) '°. Note that:

3 3 T
= BNE () = 3k [ R () (41)
n=1 n=1 0

The definite integrals in brackets are of a well-known general form, which can be shown
to yield:
/oo —iAx —B:v dr = e g /oo e—B(atc-i—i%)2 dr = e—A2/4B \/7_T
—0 —o0 VB
ie.
Y1

o0 ’ ! r2
—ip® . of I g g T g
/ e i Mie 7 dvy; = \[moft e Pi /
—0o0

Therefore, the above expression (40) becomes:

D, = 7;;2(%3/ dT/dkH{ )\ Jrow et p /4}1/2 5o

5 (k2 + k) cosQr
(—s) 5 (k2 + k7)) sinQr
k2

na t—00 a/2 .o ~
= —(27T3/ dT/dk H[ P/ v | 2

m2

5 (k24 k2) cosQr
(—s) & (k2 +k2) sinQr (42)
K

10Tn the limit © — 0 we have: p,, — k7.
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(remember the definition of gbgi)). A summation over ¢ is understood; once more, let us
remind that a (/) denotes the test- (1%—) particle species respectively.

From now on, we will restrict ourselves to the single-species (electron) plasma case
(species indexes are now dropped for simplicity). Therefore, if (and only if) ay = o

o = '), one may write:
( : y

1 20, 4v? 1 2v v?
2 : 2 . 2 _ 2 2
—espiiny = o 0~ ] = g0 =i
Thus, setting:
2U,, 3 2U,,
qm(k’Ta U) = Pm 1t = Z annm(T) — i (43)
Om n=1 Om
(cf. (41)1) we have:
D, N .
Dyt = 2aem? [ ar [ ( —oia2/4 —”?/“i>f/2
/ m2( ) ; T 1:[ e e fa
Dy

5 (k24 k2) cosQr
(—s) 3 (k2 + k2) sinQr
K
t ) , .
- n_C;(27T)3/ dr /dk e 2o T g/ o= 20, vi o Vk2
m 0
5 (k2 + k) cosQr
(—s) 5 (k2 +k2) sinQr
k

N —2/o: [* i 24T
= W(QW)?)B Z/l/o dT/dke 0 /42

5 (k24 k2) cosQr
(=) L (k2 + k2) sin Qr
k2
Le.
D ‘ t - 1 0
L= Zeemterhion [Lar (/ dk e o/ g2 V,f) 2 COST
Dy m 0 (—s) 5 sinQr

‘ t B
D = Z4(mye o [dr ( [ e—“mq%/‘*kﬁv;) (44)

. . . a2
(once more, a summation over m is understood where appropriate; thus e Un/Om —

e—vi/oL g~/ 1. Note that the integrals within parenthesis in the last relations present

Ygm] = [pm] = 1/[v] = L7'T"; in the limit Q@ — 0 we have: ¢, = kpnT — 12“Tm
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a cylindrical symmetry due to the existence of the N matrix in it (cf. (43)); in the ab-
sence of an external magnetic (or any) field, it reduces to a spherically symmetric form,
as N(7) — 71 12

For convenience we shall define the quantities in parenthesis in the latter relation as

13.
I = /dk AR { kZ;kz } (45)
As a matter of fact, relation (31) holds as it stands for any particular form of V' (r).
However, this is not the most general form in terms of V' (r) (still not specified, that is).
Remember that, in principle, V = V(|r|) = V(r) implies that V = V(|k|) =V}, ( =
V(K3 + kﬁ) in a cylindrical-symmetric problem). Therefore the Fourier transform of the
interaction potential does not depend on the angle « ( = (2,k,)) and the corresponding
angle integration inside the triple integral Iié;”} can be performed straightaway, giving a

final double integration in &, k. This is precisely what we will do in the next paragraph.

A.2 The Fourier-integral(s) | d’k... = IIE(J;)’”}

Let us remark that ¢? can be expressed in an elegant manner as ':

.2'0 'U2 p v v ,p'V
=0 = Y on— i) = N0, A i) = A i
m m

=P 5
m Um m Um ag
and can be decomposed into {z,y} = L and {z} = |- parts:
2v 2v 2v
2 T\2 Y\2 . Z\2 2 2
= (o —i=2) + (py — i) + (p, — i = +
¢ = (P P )"+ (py -, )"+ (p- o )" = q1 + qj
27f O — 0, the k— integral (cf. (31)) in D1y = Day = D33 will be:
Djj = - /dk e /Y2 k2= / di; e~ % /4 / dly e~ 9 /4 / dkj e~ G/ V2 k2

(i #1#j=123)
13e.g. for a Coulomb potential V (r) = e2/r, (45) reduces to:

Icoutombi)? = /dk e o0/ (i)2 . ke
k(3) 2,”-2 (Z?:1 k3)2 k.g

17p the limit Q — 0 we have:

2 5 .
¢ — qun = Z(k‘mT—iiv_m)? — Z(kfnTQ _41)_72,1 _4Z.k?7,;1)m7') — 22 _4»,}_2 _4Z'T(k v)
m m m

m m m m
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By making use of the explicit definition of the p vector above, as well as that of the NV
matrix in it (cf. paper (4)), we find

2v
2 |
g = (hyr—i=")’ (46)

I o

2
2 2 vl PL-VL
— 4L

QL pL O-i ? oL

’U+U

= Q°? <k§ + k;) 2(1—cosQr) — 4=
ol

2
—i—Q7!

o1

(kyvy + kyv,) sin Qr — s(1 — cos Q1) (kyv, — kyvy) (47)

in cartesian coordinates. In cylindrical coordinates, one may set:

k| cosa v, cosl
k=] k; sina |, v=| v, sinf
k| v

so relation (47) takes the form:

¢ = 2 g—% (1 —cosQr) — 4% - ii kgu sin(f — «) — sin(f — o — sQ7)
= 4 g—% sin? % — % — i%kgjL 2 sin(s%) cos(f — o — s%) (48)
and the k- integral(s) in parenthesis in eq. (31) become:
/dk e T2 by =
k| cos o k| cosa
/ dk, k. / dky / do V2 | ko sina kisina | eordi/temondi/t
&l

I ;

that is

ki +k;
J_ o s
= o B35
[e'e) [e'e) 2T 5 . 2/4 » ki
/0 kb [y [ daem /e i g
> k?i -0, ¢% /4 -0 q”/4 1
= /0 dk ki ) da e L / dk| € V k=(k? +kﬁ)1/z kﬁ
> ki (LI}
= /0 iy k., T [’fu (49)

IMPORTANT: Note the appearance on the magnetic field only in the first (angle-) inte-
gration I,. Furthermore, the exact form of the interaction potential only enters the (rest
of the) k— integral.
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The integral I, will be analytically evaluated in the next paragraph. The remaining
part of the k— integral has to be evaluated once a specific form of interaction potential
is chosen °

A.2.1 The a- integration

The - integral in parenthesis in (49), say I,, can now be evaluated analytically. For

convenience, we can use expression (48) which, once substituted into I,, yields:

2

2
[a — doae™ %t qJ-/4
0
27 ki 2 Qr UQL kv . Qr Qr
_ dove 0L o7 Sy oo GZTZSID(ST)COS(Q a—s5")
0
B o0 vl por kv o}
— ¢ Llge SURECS eor dov ez2 L5 sin(s3F) sin(5 —O4a+sr )

0
We may now use the Bessel function identity:

zx sing _ Z J in¢ V.CU,¢ cR (50)
to obtain '6: .
K r YL k Q
I = (2m) e ot 0 F o7 g, (200 g 77) (51)
where Jo () is the zeroth-order Bessel function of the first kind (actually an even function
of ).

Remark: In the limit Q — oco: I, — o e vl/oL 17,

A.2.2 Final form of the coefficients for an arbitrary potential V(r)

By substituting from (51) into (49) and then back into (31) we obtain:

Dy N —v2/oy [t o0 o0 -0 @2 /4 v
{Dz } — W(Qw)‘ie i/ H/O dT/O dkLki[/_oodk”e ||Q||/4Vk?}

1
e*trJ_Z—%sin?%JO(2kLUL sin&){ ( 5 cosQr }

Q 2 s) 5 sin Qr
t 00 o0 ~
Dy = Z2emyte o [Car [ dkiky| [ dky k2 e 12
l m2 0 0 I R k
k2 2 Qr k Q
e oL QJ§ sin Q— Jo( 10U sin 77—) (52)

Be.g. Ié”L’Il} first and then k, — or vice versa.

'®Note that the integration has invoked a 65§ Kronecker symbol, thus setting n to zero i.e. f;” eMda =
27 5,{( 0
17In the limit Q — 0 we have:

In — (2m) e T M2 evl/on Jo(k v, 7)
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Let us point out that & only appears inside the brackets (so the kj— integration may be
easier to carry out first).

Relation (52) is exactly (31) in the text (cf. (29)); it is the most general form of the
diffucion coefficients for a test-particle in a maxwellian background, interacting through

a central potential V'(r) (which remains to be specified).

B Explicit calculation for a Debye potential - from
(31) to (33)

Let us now explicitly assume that the (long-range) interaction potential V' (r) is a Debye

potential:
e kpr ~ e? 1 ‘70
Vi(r) = e? V= — =
=== Y%= mpis K+ K+ K

(Ap = kp' = (%)71 is the Debye length [1)). (Vo = eq ew, Vo = %" are appropriate
constant quantities

Eq. (52) directly becomes:

D, 4ng, 63 —v2/o t o 3 o —oy g2/4 1
(2] - tmen fu ol

2 1
— % sin2 27 JO(QICJ_UJ_ sin &) 5 cos T
Q 2 (—s) % sin Q7

4 e} 2 —v2/o t o0
Dy = 2Nalq —vj/ H/ dT/ dk, k|
0 0

2
myg,

o0 -0y q2/4 1
7wy e E}

k Q
L;L sin %) (53)

62
-0 Q—J- sin

2 9r
e 2 2

To(2

(obviously k* = - k7 = k3 + kj + k2 = k7 + kf).

B.1 The k- integration

L) 18

We may now attempt to evaluate the k- integral (in brackets in (53)), say I’“(fu

Substituting from expression (46) we obtain:
oo 2 1 1

Jr - / dley e C1 4/
dl oo (k2 + kD)2 | K7

o0 —0 'rfi—%H )2/4 1 1
_ din e ! (k) 7
/_oo “ (K2 + k)7 | &

8Note the absence of the field i.e. 2 in the || — part of the formulae; thus, the results of this paragraph

are valid as they stand in the free-of-field (free motion) case, as well.
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o '02/0H /oo dki e °l k272/4 COS(k” il T) 1
— ¢l A ia il el 54
o (KL +kp? | A o

(note that the imaginary part of the integral cancels for reasons of symmetry, as the

integrand in it is an odd function of kj). The integrals in (54) can be found to yield '
1

= {
ki
ki

Z [ skiv)T (1 T 0'||kL7- /2 = SkJ_'UHT) Erfc( \/_kJ_T + S\/'_)]} (55)

s=+1,~1 o]

ig \/U_II/:uT + gevﬁ/g” eoIFLT /4

where the upper (lower) sign holds for I+) (1D} and
ko= (K +kp)"
. The complementary error function Erfc(z) is defined as:

Erfe(z)=1—Erf(x —1——/

Note that the integrals I,ST’”):
(i) converge to zero at both k; — oo and 7 — 00, as - more or less - expected.
(i) give a finite limit at 7 — 0 20 :

lim [{ H} evﬁ/gll
2

T—0
and diverge precisely as k{f”l}, respectively, at k;, — 0 :

. 3,1 1,
Jim, (kD) =

T i/
2

B.2 Coefficients (final form of ...)

Expressions (31) for the coefficients (actually functions of {v |, vy, t; 01,0y, §2}) thus finally

yield:
DL ; k2 Q 7
t 00 —0% — sin? k Q,
{gl } :ma L 4e2e?, /0 dT/O dke ST e 5? sin —27)
[
1
K2, (3/2,1/2) { Ff' } 5 cos QT
(]_ - m) Fa _78 Sin QaT (56)
D 1 | 1

19Details will be available in [3]; they were omitted here, for the sake of brevity in presentation.
20Note that Erfe(z) + Erfe(—z) = 2
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where the functions F' = F&'"l}(kb V)|, T; aﬁ") are given by:

el = ig of keI

A ;A ~ 1 17
+Z Rl ) {651“7]“7 (LF of kT 7/2 F skovyr) Brfe(5 /o kim + s Gl )} (57)

| 7
s=+1,—1 2 Vol

ki = (KL +kp)'?

and

- the upper (lower) signs corresponding to the L (||)- parts respectively. Erfe(x) is the
complementary error function:

Erfe(x)=1—Erf(z —1——/

(the subscript «, denoting the t.p. species in Q, m, o was dropped).
These are precisely relations (33) and (32) in the text.
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(@) (b)

Figure 2

The perpendicular (interaction) force-correlation function C 1 (T VLV, /;B) as a function of time (scaled over a
cyclotron period 7). In ascending order, the magnitude of the magnetic field is set to B = I, 2, 3 Tesla respectively.
Both velocity components v, and V,, are set to be equal to v,, = (T / m)l/z. In (a) C, can be seen to decrease fast in
time, still bearing a "tail" of gradually smoothed out peaks every gyration period (a signature of the magnetic field); see

(b).

(@) (b)

Figure 3

The parallel (interaction) force-correlation function C,, (T;V 1Y /;B) as a function of time (scaled over a cyclotron
period T"). In ascending order, the magnitude of the magnetic field is set to B = /, 2, 3 Tesla respectively. Both velocity
components Vv, and V,, are set to be equal to v, = (T / m)l/z. In (a) C), can be seen to decrease in time very fast

(faster than C | ); note the absence of "tail" as in fig. 2b (since motion along the magnetic field is essentially "free"); see

(b).



Figure 4

C, (‘[ VLV, B ) as a function of time (scaled over a cyclotron period 7' ). In descending order, the magnitude of the

1/2

perpendicular velocity component v, is setto v, = (T / m) and 1.5 v, respectively. v,, is set to be equal to v, .

and the magnetic field is set to B = 3 Tesla C| can be seen to decrease faster in time as Vv increases.

Figure 5
In ascending order: diffusion coefficients 1D, , D , D, (functions of {t;vl,v/ B }) represented against time ¢

1/2
(scaled over a cyclotron period T"). Both velocity components v, and V,, are set to be equal to v, = (T / m) . and
B=3T.



Figure 6

In ascending order: diffusion coefficient Dl against time ¢ (scaled over T') for values of B = 1, 2, 3 T respectively.

1/2
Both velocity components v, and V,, are set to be equal to v, = (T / m) . The upper curve (B = 3 T) corresponds
to the middle curve in fig. 5.

Figure 7
(Long time) behaviour of the diffusion coefficient DJ_ against ¢ (scaled over T) for B = 3 T (cf. fig 6). Both v, and

V,, are set to be equal to v, .



