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Chapter 1

Introduction

Summary

We present a brief overview of kinetic theory for interacting particles, giving
emphasis on a test-particle problem as applied in an electrostatic plasma. The
motivation of the present study is then exposed. Arguments are forwarded
in two directions. First, a collision term should a priori explicitly depend on
an external force field, if one is present. Second, the existence of distribution
function inhomogeneities should be taken into account. Both aspects should be
considered in a correct collision term, which should be properly derived from
first principles and not obtained by simple extrapolation from the homogeneous
case. Finally, the content of forthcoming chapters is briefly outlined.

With classical thermodynamics,

one can calculate almost everything crudely;

with kinetic theory,

one can calculate fewer things, but more accurately;
and with statistical mechanics,

one can calculate almost nothing exactly.

Eugene Wigner
in A Critical Review of Thermodynamics



2 Kinetic Theory for a Test - Particle in Magnetized Plasma

The aim of this chapter is to provide the general background for forthcoming
chapters, by briefly presenting the framework of plasma kinetic theory.

1.1 Kinetic theory - prerequisites

The description of the macroscopic behaviour of matter has been a long-standing
problem. Since the original work of Boltzmann, who set the founding blocks
of the field that would later be identified as Non-Equilibrium (NE) Statistical
Mechanics (SM), a plethora of works have been devoted to the study of ensem-
bles of particles, in an attempt to relate the macroscopic evolution in time of a
real system - mot in equilibrium - to the microscopic dynamics of its constituent
particles.

Given the large number of particles in real physical systems (say N, typically
of the order of 10?3 to 10%7 particles per liter, depending of the state of matter)
the exact description of a real system via Newton’s laws of dynamics would
require the simultaneous solution of 6N equations of motion: an inconceivable
task, even with today’s (or the near future’s) ‘powerful’ computing tools!. From
a statistical-mechanical point of view, one overcomes this problem by defining
an appropriate phase space, say I, representing the set of possible states of the
system in terms of the combined values of the variables characterizing the state
of the system, e.g. particle positions and momenta {q;,p;j}, Jj =1,2,...,N
(i.e. 2d variables per particle in a d—dimensional physical space, d = 1,2,3). A
(probability) distribution function (pdf, df), say p(I"), is thus defined, describing
the way the system’s states are distributed over all possible configurations. The
evolution in time of p is governed by the LIOUVILLE equation?:

op
o~ L

However, even though this equation can a priori be solved formally:

p(t) = e"p

(so the system’s state at an instant ¢ is ‘known’) this description is rather ab-
stract, given the large number of particles in the system (and variables in the
argument of p).

1.1.1 Kinetic theory

The standard way to cope with the above problem consists in a reduction of
the information contained in the system’s phase-space, by actually limiting our
ambition to the study of the evolution of the configuration space of a small
number of (one, if possible) particle(s), which is (are) assumed to be represen-
tative of the system as a whole. In a general manner, such a theory aims at the

I This ‘technical’ problem lies in the very foundation of the field of Statistical Mechanics.
2or VON-NEUMANN equation in a quantum-mechanical system.
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derivation of a kinetic equation:

of

o~ S

describing the evolution in time of a single-particle reduced distribution function
(rdf) in phase-space (i.e. a function f(x,v; t) of particle position and velocity).
K formally denotes a kinetic evolution operator. The subtle point is how K
is obtained, thus passing from the rigorous N—body Liouville equation to the
(1—body) reduced kinetic equation.

According to the standard picture, a system’s evolution may be divided,
roughly speaking, into three distinct stages. In the first stage, the short (dy-
namic) stage (i.e. while ¢ remains lower than a correlation time t.,,) particles
evolve under their microscopic dynamic laws, resulting in initial inter-particle
correlations being damped very fast In the second stage, the (long) kinetic
stage, the single-particle distribution function is modified, obeying the kinetic
evolution laws of the system (and approaching equilibrium under the influence
of collisions). In the final, hydrodynamic stage, only (slow) changes in local
hydrodynamic parameters of the system take place.

Kinetic theory, as defined above, aims in describing the system’s evolution
during the kinetic stage.

1.1.2 Transport theory

Once a kinetic operator has been obtained, the link to the macroscopic world is
made by defining observable quantities as being average values of appropriate
microscopic variables, and then deriving the corresponding evolution equations
by using the kinetic equation as a starting point. To be more specific, let A(t)
be an observable associated to a microscopic quantity a = a(x, v; t):

A:/dxdvaf

The evolution of A in time will obey:

0A 0 Oa
= g/dxdvaf = /dxdvaf

at
/dxdvaé;—{ = /dxdvale

3. transport of matter and energy is therefore modeled by a system of evolution
laws, related to the microscopic dynamics of particles.

3We have used a well-known postulate of Statistical Mechanics [4] to pass from the third
to the fourth step; namely, it is assumed that:

(f: ata’> = <8tf7 a> )

provided that the product (-, -) is non-degenerate (i.e. (f,-) =0= f=0and (-, a) =
0=a=0).



4 Kinetic Theory for a Test - Particle in Magnetized Plasma

1.1.3 Collisions

A very important role in this description is played by inter-particle interactions.
Such interactions are often called ‘collisions’ even though, properly speaking,
particles may interact via long-range (e.g. gravitational or electrostatic) forces
and thus trajectories may be essentially different from the hard-sphere (‘billiard
- ball’) intuitive image (see figure); this means that neither do particles crash
into each other, nor are interactions necessarily instantaneous and point-like
(i.e. localized in time and space). Collisions are taken into account through
an appropriate collision term, say C, in the kinetic equation. Such a term first
appeared in the original BOLTZMANN equation and has ever since been a widely
discussed subject in literature, since it is related to the irreversible character of
dynamics of matter.

kmpr

m

Figure 1.1: (a) Collisions in a hard-sphere model (point-like interactions), as
compared to (b) charged-particle collisions (long-range interactions).

1.1.4 Influence of an external field on collisions

The derivation of a collision term for a given physical system should be carried
out carefully, since the nature of particle interactions and the geometry of par-
ticle trajectories in between them need to be carefully taken into consideration.

A point that needs to be made is the following. In the majority of previous
studies, particle motion between collisions is taken to be free: particles are
essentially assumed to move on a rectilinear trajectory at a uniform velocity,
as if no force were present. However, this is not necessarily (or, rather, never)
true. First of all, motion is in principle affected by interactions with all other
particles?; this fact, too difficult to handle analytically, is a priori neglected in
the range of validity of the weak-coupling approximation (to be defined in the
following chapter and adopted from there and on).

4More precisely, particles suffer forces due to either the cumulative effect of numerous two-
body interaction forces or, in the case of charged particles, electro-magnetic forces generated
by moving charges (via Maxwell’s laws).
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Furthermore, even at zeroth order in the interaction, the presence of an
external force field may strongly modify ‘free’ particle trajectories between col-
lisions. For instance, in the widely discussed paradigm of weakly-coupled oscil-
lator gases (i.e. large ensembles of weakly-interacting particles, each one subject
to a parabolic potential), periodic motion is by no means rectilinear and colli-
sions definitely depend on the harmonic potential parameters (e.g. characteristic
frequency). In the particular case of magnetized plasma, where ‘free’ particle
motion is known to be helicoidal (spiral-shaped), this effect may be quite im-
portant, depending on the relative magnitude of gyration to interaction scales
(see figure 2.4).

Finally, collisions in principle depend on intrinsic physical parameters of the
system, for instance temperature and density of the thermostat, in a test-particle
problem.

En resumé, a collision term is a priori expected to depend on all these pa-
rameters and should bear a form which takes into account, in particular, the
exact effect of the external field on particle dynamics. As we shall see in forth-
coming sections, the latter is simply absent from most kinetic equations widely
used in literature. In particular, the field is often taken into consideration in
the free Liouville part, i.e. the left-hand-side (lhs) of the kinetic equation, but
not in the collision term (see e.g. in [5]).

The general ideas outlined so far were necessary to define the theoretical
context of our study. However, these issues are basically standard, so supplying
further details is not truly necessary in what will follow; details may be found in
textbooks of Statistical Mechanics (see e.g. [4], [23], [24], [26], [29]). Neverthe-
less, the specific theoretical aspects to be considered in our particular problem
will be exposed in forthcoming sections.

1.2 Plasma

Ensembles of electrically charged particles interacting with each other, referred
to as plasma®, have always been present in space and in the earth’s atmosphere;
furthermore, laboratory plasma is today widely produced on earth, for funda-
mental research purposes as well as for practical applications. Plasma, which is
often quoted as ‘the fourth state of matter’ due to its omnipresence in real world,
has long been studied, both theoretically and experimentally, and is known to
present very rich dynamics, well above the ‘usual’ level of complexity of neutral
matter.

In the last few decades, the aim of controlling thermonuclear fusion (the
sun’s power generation mechanism!) for man-oriented applications and the big
amount of relevant experimental research run on fusion devices has provided a
vast field of application for plasma transport theories, as well as a real challenge

5The term plasma (from the greek word ‘mAdopa’, meaning ‘moulded form’, ‘creature’)
was first used by I. Langmuir in 1928 to describe the positive ion column in an experimental
glow discharge (see reference in [123] - ch. 18, [22]).
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in terms of demand for theoretical ground for prediction of measurable quantities
(hence e.g. transport coefficients).

1.2.1 Plasma-kinetic theory

From a statistical mechanical point of view, the long-range character of electro-
static interactions actually distinguishes plasma from neutral gases (described
by Boltzmann-type theories) so a different approach is needed. Since the orig-
inal work of Landau [75] in 1936, plasma has often been used as a test-bed for
kinetic theories and a variety of methods have been elaborated, in an attempt
to relate macroscopic plasma transport phenomena to the microscopic nature
of charged matter. Outstanding contributions have been the works of Vlasov
[119] in 1938, who was the first to include the reciprocal interaction between a
particle and the mean surrounding field in a “self-consistent” description and
that of Balescu, Lennard and Guernsey [55], who included collective effects in
an elegant description. In the 1960s, the so-called Brussels’ school provided a
new formal framework (in general and specifically in plasma research) and mi-
croscopic theories of dissipative phenomena were associated to master equations
[4], [40]. This new formalism, under which all previous works were rigorously
recovered and thoroughly studied, allowed for a broad discussion, concerning
the paradox of the (obvious) irreversibility of the macroscopic world (already
evoked by, and widely opposed since, Boltzmann’s work) with respect to (time-
reversible) microscopic dynamics.

In particular, the need to manipulate the dynamics of plasma in magnetic
confinement fusion devices (‘tokamak’ reactors)[45] has motivated research on
the influence of external electro-magnetic (EM) fields on plasma. A number of
works carried out in this direction will be cited later on, for the sake of reference.

1.2.2 Plasma classification

As a matter of fact, the rich variety of plasmas existing in nature (whose com-
plex behaviour may differ essentially from one case to another) imposes a certain
classification. Starting from a fundamental level and focusing on and on, one
has to distinguish, for instance, classical from quantum-mechanical plasmas (de-
pending on the mean inter-particle distance, the latter corresponding to very
high density values), non-relativistic from relativistic plasma (depending on the
average particle energy, i.e. temperature, the latter being found in gravita-
tionally collapsing stars in space), weakly-coupled plasmas from strongly-coupled
electrostatic systems (depending on the average potential-to-kinetic energy ra-
tio; the former are closer to rarefied gases and were studied first, while the latter,
rich in collective phenomena, are closer to a solid state physical system®), fully

6 According to certain authors, only the former is traditionally called ‘plasma’ (see discus-
sion in [11]); however, the latter seem to gain increasing interest in the last decade, since the
theoretical prediction and subsequent discovery of ‘plasma-crystals’ in both laboratory plasma
devices and tokamak walls (see for instance, the discussion in [118]; also a series of articles in
[126]).
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from partially ionized plasma and so on. Furthermore, modern literature in
plasma-kinetic/transport theory often makes the distinction between: (i) clas-
sical transport theories (plasma in an infinite cubic vessel, possibly in the pres-
ence of external fields), (ii) neoclassical transport (new rich behaviour of plasma
submitted to a toroidal geometry in tokamaks) and (iii) anomalous transport
(fluctuation - induced transport, due to the random microscopic nature of both
interactions and EM-fields). Finally, if the bulk plasma is in a highly spatially-
correlated state (closer to the hydrodynamic picture of a common fluid) it is
often identified as quiescent plasma, in contrast with turbulent plasma [14], [33].

The exact definitions of (certain among) the above terms will be given in
the text, where necessary. In order to delimit the area of our work, let us men-
tion that this study concerns a classical, non-relativistic, fully-ionized, weakly-
coupled plasma. It mainly focuses on classical transport, though it also aims in
establishing an intuitive link towards anomalous transport via the inclusion of
interaction-force correlations in a classical kinetic picture.

1.3 Kinetic equations - an overview

1.3.1 Basics

Let us counsider a particle (mass m), moving (in a d—dimensional physical space,
d =1,2,3). At the instant ¢, the particle is located at position x with a velocity
v. The equations of motion read:
dx dv Fext
— =V — = a=
dt ’ dt m
where Fext is due to an external force field accelerating the particle at an ac-
celeration a.

Now let I' = {x, v} be the (2d-dimensional) phase-space associated to this
system. Defining the (2d—) position vector of the particle state in phase space:
X(t) = (x(t),v(t)), the above dynamical problem takes the form:

dX

I

where F = X = (v,a) is the generalized force (a d—dimensional vector).
In the absence of interactions with other particles, the function f(X) de-
scribing probability distribution in I'— space obeys a continuity equation”:

— = =+ s (Ff)=0

"To be precise, continuity holds if: (i) a Koopman operator is defined by the solution of
the given dynamical motion problem Si;x = x(t) (assumed non-singular), and (ii) we assume
that states evolve under the action of its adjoint (Frobenius-Perron) operator (under suitable
boundary conditions). The evolution of observables is then described by: Uy A(x) = A(S¢x).
Therefore, if dynamic law S is volume preserving (Liouville th.), then it may be proved that:
Py f(x) = f(S—¢ x), where P; is the operator of temporal evolution of states in phase space I.
For details, see in [27] (pp. 36-37, 42-43, 185-186 therein), [96]; also p. 2-2 in [46].
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If (and only if)®:

| OF .,
075 _g ie. b

X, oo,

the above equation takes the form:

%—l—vg—i—kag—izg—Llf:O (1.1)
where the index 1 is used to distinguish the single-particle (‘free’) Liouville op-
erator L; from the N—body Liouvillian, L = Ly (mentioned in the beginning).
Notice that this equation is time - reversible®, as is the Hamiltonian dynamics
related to it.

Once interactions with other particles are taken into consideration, the above
equation will suffer a modification of the form:

of . of . Of <df
+v= +ta—= (-
dt

ot ax | Yov (1.2)

coll

where the rhs accounts for interactions (collisions) with other particles. This
equation is not a closed equation in the d.f. f; as we shall see below, it introduces
a coupling to a hierarchy of equations for higher order distribution functions,
the whole of which contains no less information than the complete (N —body)
Liouville equation. In order to obtain a closed equation in f, a truncation is
considered, in order for the description to be compatible with thermodynamics
and yet fulfil certain conditions (conservation laws). Collisions, assumed to
lead the system towards a final state of maximum entropy (according to the
second law of thermodynamics) are thus taken into account by a collision term,
entering the rhs of (1.2). The final (kinetic) equation obtained in this way has
the structure of (1.2) but is now closed in f and irreversible in time.

A simple case of a collision term is the Bhatnagar-Gross-Krook (BGK) col-

lision term:
ﬁ f(X7 \2) t) B fO
dt T

coll

where 7 is a phenomenological relaxation time and fy is a local equilibrium
function!?. This approach, discussed in [102], [123]'! (and criticized in [48]),
has been adopted in various studies e.g. [73], as it reproduces the qualitative
aspects expected (namely in terms of conservation laws; see discussions in the
references).

A brief survey of kinetic equations of relevance to our problem will be pre-
sented in a forthcoming section.

8The system is then said to behave as an incompressible fluid, see e.g. in [17].

91t remains unchanged upon setting: ¢ — —t, v — —v (leaving x unchanged).

10¢.g. a Maxwellian with space- and time-dependent density and temperature parameters,
in the most elaborate version of the model (see the discussion in [102]).

11 Also see references in Elliott’s paper therein (including the original BGK paper).
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1.3.2 Generic form of a rigorous kinetic equation

Regardless of the method used for its derivation, a kinetic equation will obey
the general form:
of of of

_— - -1 — =
B + A +m Fav C{f} (1.3)

As defined above, f = f(x, v; t) is a single-particle reduced distribution function
(rdf) (a function of time ¢, particle velocity v and particle position x, in a
non-uniform system). F denotes the total force exerced on the particle; in a
self-consistent description, it should correspond to:

F=Fmr + Fext

where Foxt(x,v) is due to an external force field'? and F¢(x,v; f) is the
result of the mean-field potential due to charge screening effects'®. Finally, the
collision term C in the right-hand-side (rhs) accounts for particle interactions.
In principle, the collision operator depends on the instantaneous value of f itself:
C = C{f}; a kinetic equation is therefore nonlinear in f. In some cases, however,
C may be a linear operator acting on f (so the kinetic equation describing a class
of problems is a linear differential equation). Such is the case in a test-particle
problem (to be presented and discussed below).

1.3.3 A brief account of existing plasma-kinetic equations

All of the studies mentioned above have led to an equation in the form of
(1.3). Certain among them rely on a phenomenological description of particle
collisions (related to stochastic mathematical theories) while others adopt a
more rigorous approach, either based on perturbation theory [4], [7] or formal
projection-operator methods (see e.g. [15], [46], [68]). In order to point out
the relation of our work to its background, a brief summary of previous results
(for classical systems) will be given in the following paragraphs. This account
aims in roughly sketching the theoretical background of our study and is by no
means exhaustive. For a more detailed report of the properties of the equations
presented in the following paragraphs, see in [4], [5], [7], [28], [34], [43].

BOLTZMANN equation (BE)

In his original work in 1872 '#, Ludwig Boltzmann studied a dilute gas of col-
liding particles (in the absence of an external field) and derived the equation:

Fovvr = [av [dogos imvioreevian - fxvin fxviio)]

12Notice that Fext corresponds to ma in the previous paragraph; it is (only) due to the
external field (and has nothing to do with interactions). However, F,¢ is due to interactions
with the ‘cloud’ of particles surrounding our specific particle.

L3P ¢ in a specific position x depends on the value of f in the vicinity of x, hence the
notion of ‘self-consistence’.

14We will not burden this text with reference to the - widely cited - work of L. Boltzmann;
an exhaustive list of relevant sources can be found in [4].
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= CBol{f} (14)

where f = f(x,v;t) is the probability distribution function in phase space. Note
the definitions:

- v denotes particle velocity before a collision;

- v/ denotes particle velocity after a collision;

-9=lgl=Iv—-va;

- w denotes the solid angle around a collision event,
and, finally,

- 04 is the differential cross-section.

The kinetic evolution is therefore taken to obey the combined action of a
gain and loss terms (in the rhs), plus a flow term (in the lhs). In a uniform
system, the latter cancels and the equation becomes:

2= 0 [avi [ 0000 - 906w
Cpoi{9} (1.5)

where ¢ = ¢(v ;t) is now the probability distribution function in velocity space;
n denotes particle density.

VLASOV equation (VE)

In 1938, A. Vlasov [119] studied a weakly-coupled system of charged particles
interacting via (long-range) electrostatic forces (in the absence of an external
field, once more) and derived an equation in the form:

of of 1 of

— = Fos(x)=— = 1.

B +V8x +m f(x)av 0 (1.6)
(f = f(x,v;t)) where the role of interactions is limited to the appearance of

9 OV,
me(X) = _8_x/dX1 /dVl V(X _Xl)f(X1,V1) = _ 8Xf

in the so-called mean-field (mf) (Vlasov) term, which accounts for interactions
with surrounding particles (charge screening). Notice that this term is related
to space inhomogeneities, and thus disappears in the case of a uniform system.
The VLASOV equation is reversible; it describes an inhomogeneous (collisionless)
plasma.

LANDAU equation (LE)

In 1936, Lev D. Landau [75] studied a uniform gas of weakly-interacting particles
(in no external field) and derived the equation:

0 0 0
%= 0 [ g6t (5 - ) 000w

CLandau{¢(v)7 Qs(vl)} (17)
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(¢ = ¢(v;t)). Gs denotes the Landau tensor:

B ¢%6,5 —
Grs (g) = W grsg#
where g = v — vy; B is an integral in Fourier space involving the interaction
potential (to be discussed in detail later on). Notice that the physical system
described here is isotropic; therefore, not surprisingly, this tensor is symmetric.
In order to describe a non-uniform system (in the absence of external fields),
the following generalization of the LANDAU equation was later considered [4]:

of

o TVVI=

= /dvl/dxld(x—xl)%G<%—aiv1) fx,v;t), f(x1,v1;t)

= CLandau{f(xav)af(Xlavl)} (]-8)

While trying to evaluate the LANDAU collision integral in the case of an
infinite-range (e.g. Coulomb) potential, one encounters the well-known problem
of divergence of the Fourier integral involved in it (i.e. B), at large as well
as short distances. The former is attributed to the long-range character of
electrostatic interactions while the latter is due to the weak binary interaction
hypothesis, which fails at short distances. More details will be given later, where
appropriate.

BALESCU-LENNARD-GUERNSEY (BLG) equation

In 1960-61, R. Balescu, A. Lenard and R. Guernsey [55], working independently,
went one step further, including collective effects and furnishing a dynamical
dielectric constant which depends on the phase-space distribution itself. Plasma
polarization effects, not included in the Landau picture, were thus taken into
account. We do not provide the specific form of the BLG collision term. Let us
only remark that it was derived for a uniform system in the absence of external
fields and yields a symmetric form which is very close in structure to the LANDAU
collision term (see in [3], [5] for details).

1.3.4 Master equation

It is very interesting to notice that the original work of Landau in the 1930s
consisted in actually solving the two-body problem for (long-range) electrostatic
interactions in order to obtain an approximation of the Boltzmann equation for
electrostatic plasma. Vlasov worked in a similar way. However, in the following
two decades, these equations were derived in a quite different (and more elegant)
manner, by establishing a hierarchy of coupled equations for reduced p—body
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(p=1,2,3,...) distribution functions: the BBGKY hierarchy. Assuming inter-
actions to be weak (of the order, say, of \), the hierarchy may be expressed
in terms of powers of \; the VLASOV and LANDAU equations are thus formally
recovered in order A' and A? respectively [3], [4], [8], [23], [24].

In a generic manner, at second order in'® X the above procedure gives the
Generalized Master Equation (GME) [4], [40]:

. t

D = [Car [axaLitio) fXai t =) fKait =7 (19)
where L; the Liouvillian of interaction between particles 1 and 2. Note that
initial correlations were neglected. The GMUE is a non-Markovian integro-
differential equation: the value of f at the instant ¢ depends on the system’s
‘history’ i.e. its state for all values of 7 € [0, t].

The effect of ‘non-Markovianity’ (non-locality in time) is very subtle to han-
dle and has most often been overcome either via formal manipulations'® or by
making certain ‘Markovianization assumptions’; we will comment on this point
later. Nevertheless, let us mention that some recent studies have considered
non-locality effects; see e.g. [58], [121]. This is beyond our scope here.

1.3.5 Kinetic equations for plasma in an external field

A number of works have focused on the kinetic description of an electrostatic
plasma in the presence of an electric and/or magnetic field(s). Let us limit
ourselves to citing the most important contributions. A detailed discussion of
the relation of our work to these studies will be carried out later.

Homogeneous plasma

The equivalent of the LANDAU equation in the presence of a uniform station-
ary magnetic field has been derived, independently and via different analytical
methods, in the 1960s by N. Rostoker [101], M. Haggerty and co-workers!'” [69],
V. P. Silin and co-workers [64], [105] and P. Schram [103]. These authors de-
rived a ‘Landau-type’ kinetic equation for magnetized plasma and obtained a
complicated set of expressions for the diffusion tensor therein, in terms of the
magnitude of the magnetic field and particle velocity.

The problem was later revisited - still for a homogeneous distribution func-
tion - by D. Montgomery et al. [85], [86], who tried to remove the notorious
Fourier divergences by splitting the interaction sphere in two parts, one of which
is assumed not to be affected by the field. The Landau tensor is then plainly

L5Remember that: L = Lo + Lin¢, see above.

165ee for instance §17.2 in [4], where the formal solution of the Liouville equation is used
to provide a closed equation in f(t).

"Haggerty’s work was based on Prigogine and Balescu’s diagram technique [4], [40] quite
popular at that time, yet very hard to follow. His analytical results seem to confirm (and
generalize) Rostoker’s formal - and very lengthy - calculation, who had rather described a
test-particle problem (similar to the one we define below).
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recovered (despite the intrinsic cylindrical symmetry of the system!), and a sim-
ple modification of the Coulomb logarithm is proposed, in order to take account
of the field. The influence of the external field is somewhat under-estimated in
this method; see the discussion carried out in [86], as well as relevant criticism
in [16].

In the same time, a BLG-like equation for magnetized plasma was derived,
independently, by Hassan et al.'® [70].

The results of all these studies involved an infinite series of Bessel func-
tions!®. Nevertheless, the convergence of this series was never questioned, and
neither was the - rather doubtful - utility of these complicated expressions for
practical (either analytical or computational) purposes. As we shall see later
on, these expressions are confirmed in the basis of our work (see in Chapter 6).
However, our calculation will try to go one step further in analytical tractabil-
ity, by deriving exact closed computable expressions for diffusion coefficients
(i.e. involving no infinite special function series; see in Chapter 8 and on).

Inhomogeneous plasma

A non-uniform plasma embedded in an external magnetic field (taken to be
uniform and stationary) was considered in various approximations by Qien in
a series of papers since the late 1970s. Having already studied the unmagne-
tized inhomogeneous case [87], Oien actually refined the picture by adding an
external electric field, which he assumed to be either uniform [88], slightly in-
homogeneous [90] or slowly time-periodic [93]?°. In practically all these studies,
however, a linearization of force-correlations around the unmagnetized case was
considered, for the sake of analytical tractability (and yet against rigour); par-
ticle trajectories between collisions were therefore calculated as if no field were
present.

A little later, P. Ghendrih [65], [16] rigorously obtained a generalization of
the previous LANDAU collision operator in the non - uniform magnetized case.
However, space-gradients appearing in the (spatially inhomogeneous part of the)
collision term were straightforward neglected, through physical arguments. The
remaining part of the collision term that was then used for the rest of that study
was identical to Montgomery’s [85].

1.4 Test-particle formalism - random processes
In the theoretical framework depicted above, a paradigm of particular interest

among statistical physicists consists in the study of a small subsystem weakly
interacting with a large heat bath (‘reservoir’) in thermal equilibrium (a ther-

18 Hassan’s work, actually very interesting and yet no so well-known, is presented in [20];
also see references cited therein for details).

19T his was rather expected, due to the cylindrical symmetry of the problem.

20@jien’s rich contribution even includes the derivation of a Boltzmann-like collision operator
[89], a study of toroidicity effects [91] and much more, of less importance here.
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mostat). Both sub-systems may be subject to an external force field. The small
system relaxes towards equilibrium under the influence of the bath.

In a test-particle problem, such a system studied consists of a particle?!
denoted by?? o, which is (are) singled out and ‘tagged’ from a large electrostatic
background (the reservoir R, consisting of Ng particles) in equilibrium. As
N, <« Ny, the test-particle(s) (t.p.) is (are) assumed not to affect the reservoir
equilibrium state, say pr (0;pr = 0)?3. The t.p., whose distribution is initially
not in (and not necessarily close to) equilibrium, will presumably relax towards
an equilibrium state p., ~ pr under the influence of the bath?!. Information
drawn from such a model includes relaxation times (as well as their dependence
on physical parameters), velocity or space diffusion-related phenomena etc.

The system described here is a well-known paradigm of a (so-called) Open
System, term used for statistical-mechanical systems which are allowed to ex-
change energy with the exterior. It is typically modeled by a Hamiltonian of
the form:

H=H, + Hgp + \H;

where H,, Hg denote the Hamiltonian of the two sub-systems (separately) and
Hy is an interaction Hamiltonian term. The resulting Liouvillian is:

L=L, +Lg+ AL;= Lo+ ALy

where the definition of all terms is obvious. Interactions are tagged by A (which
is assumed to be small in the weak-coupling approximation).

The physical mechanism of interaction depicted in this paragraph may also
be considered from a different point of view. As interactions with the reser-
voir are completely erratic, they constitute a random (or stochastic) process.
Phenomenological theories of stochastic processes most often use probabilistic
arguments in order to account for lack of microscopic information. Therefore,
one may envisage to establish a link between such theories and our work (aiming
to relate microscopic dynamics to macroscopic randomness); we will attempt to
sketch such a relation in the following paragraphs.

1.4.1 Theory of Brownian motion

The first historical paradigm that drew attention to random processes was Brow-
nian motion, referring to the motion of a heavy colloidal particle immersed in
a fluid of much lighter particles. It was defined, rather ‘accidentally’, in 1827,
when the British botanist Robert Brown observed - and tried to explain - the
random motion (ever since named after him) of pollen grains immersed in a
quantity of liquid at rest. All sorts of arguments and ideas were advanced by

2li.e. one, or ‘a few’, say N, , particle(s). The underlying hypothesis is that the test-particles

interact with the environment, but not between one another, since No < Npg.

22The letter o, from the greek word ‘cwpatidio’ (= ‘particle’) will henceforth denote the
test-particle in this text.

23This is often quoted as the ‘zeroth’ law of statistical mechanics; see e.g. [72].

24This is not to be taken for granted. It is a desired property, which should be a consequence
of the theory used to model the physical problem.
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himself and many others, in order to explain the phenomenon; as a matter of
fact, the first dynamical theories of Brownian motion were ‘vitalistic’ ones [37]:
they suggested that motion was due to the fact of pollen grains being alive!®®

It was only long after Brown’s report, in 1905, that Albert Einstein?® formu-
lated his theory about Brownian motion [63]. Einstein defined a coarse-graining
time interval A¢, which is much shorter than the observation time step, but
much longer than the typical correlation time. Considering the probability of
a grain moving at a certain distance over time At, he obtained the well-known
diffusion equation of macroscopic physics, which describes motion of particles
suspended in a medium.

Let us remark that Einstein’s intuitive attempt for an explanation was very
efficient but still phenomenological. A little later, Von Smoluchowski [107]
studied the same problem from a detailed study of the underlying microscopic
physics. It is interesting to notice that these two different approaches (or should
I say different mentalities?) can still be traced in much of the research on fluc-
tuations that has developed since then: those who argue from general principles
and those who delve into the microscopic physics®”.

It should be noted that the problem of Brownian motion proper, as modeled
by the equations to be presented below, refers to a heavy particle surrounded
by erratically moving light particles. This assumption will not be made in our
study of particle motion in magnetized plasma.

KRAMERS equation

The theory proposed by Einstein and, independently, Von Smoluchowski, was
later formulated in phase space by Kramers [74]. Denoting by W (x, v) the prob-
ability distribution function at point (z,v) in phase space®®, Kramers derived
the equation:

ow

W g wy+ 2

(W) , ChsT W
ot

v
ov m  Ov?

(1.10)

where ( is the friction constant, 7" is the fluid temperature and m is the mass of
the particle. This equation is in agreement with the Langevin equation of motion
(see below). However, it is more convenient to manipulate: if the initial value-
problem is solved, the resulting distribution function allows us to calculate any
average value of (a function) velocity v, by simple quadrature. Furthermore,
the Maxwell distribution identically cancels the right-hand-side, and is thus
immediately seen to be an equilibrium distribution.

25Remember that the atomic hypothesis was not yet widely accepted at that early time.

26In the same year, A. Einstein published his study of the photo-electric effect, which he
was later awarded the Nobel prize for.

2TWe quote N. G. van Kampen from a recent paper inaugurating a new journal on fluctuation
phenomena [116].

28The one-dimensional case is considered here, for simplicity.
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LANGEVIN equation

Two years after Eistein’s paper, Langevin [77] advanced a description which is
more familiar to the physicist’s image than Eistein’s, since based on the laws of
motion. He assumed that the particle’s motion (mass m, position x) obeys the
equation [50]:
d’*x dx
mey = ¢ 7 +&(t) (1.11)
where ( is a friction constant and £(¢) is a Gaussian random process with zero
mean value and covariance (&;(t)&;(t')) = udi; 6(t — t') (a stationary process).
This equation of motion can be exactly solved for the particle velocity v(t)
and the average values of velocity and its moments can be analytically calcu-
lated, as functions of time ¢. The equipartition theorem of statistical mechanics
(associating the average kinetic energy of a particle in thermal equilibrium at
temperature 1" to %kBT - kp is Boltzmann’s constant) then provides a link to
the asymptotic value of the mean-square-velocity, thus ‘imposing’ a value for (.
Uhlenbeck & Ornstein [114] later integrated the LANGEVIN equation, given
the statistics of &, and showed that the average position and mean-square-
displacement are given by:

(x(#)) = x(0) ([x(t) = x(0)]*) = 2t

This procedure allowed to gain insight on the microscopic mechanism of noise,
based on macroscopic measurement.
It should be pointed out that the theory outline here is only a semi-phenomenological

theory. The final thermal equilibrium has been imposed on the theory, instead

of being derived from it. The dissipation constant ¢ (which is characteristic of

the time scale of the evolution) a priori represents (and yet, also, here ‘hides’)

all the complicated dynamical processes involved in the interaction ( “collision”)
mechanism.

FOKKER-PLANCK equation

The KRAMERS equation is a special case of the general FOKKER-PLANCK equa-
tion (FPE):
ow 0 0?
—=——14A — |B 1.12
5 811{ (v) W] + 502 { (v) W] ( )

where W = W (v;t)?. The coefficients B(v), A(v) account for diffusion and
dynamical friction, respectively, suffered by the particle3’. The coefficients A(v)
and B(v) are respectively related to the first and second moments of velocity
v [15]. Of course, this is the form of the FPE in the one-dimensional case.
In a d— dimensional problem (d = 1,2,3), where W = W(x,v;t), it should

29More rigorously, a term ‘—{H, W}’ should be added to the left-hand-side; cf. (1.10).

301n the case of Kramers equation (1.10) Brownian motion (and, in fact, in any ‘Ornstein-
Uhlenbeck’ process, see e.g. §3.8.4 in [15]), the diffusion coefficient B is constant, while the
drift coefficient A is linear in the velocity v.
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generalize appropriately to a (2d + 1)-variable second order linear parabolic
partial-differential-equation (PDE). The diffusion and drift (friction) coefficients
then take the form of a square matrix and a vector, respectively.

The FOKKER-PLANCK equation arises in a variety of problems, in Physics,
Chemistry and Biology. Without going into further details here, let us just
say that our work aims in relating the form of the FPE to the microscopic
‘collision” mechanism?!. For a more general coverage of the subject, Risken’s
book [42] is a genuine treasure of reference and a mine of analytical tools.
The notions of stochastic calculus, to the extent of mathematical rigor needed
by a statistical physicist, are covered in [15], [21], [30], [49]; also in [44] for
mathematical tools. Deeper insight in fluctuation-induced phenomena, as well
as a wealth oh historical data, can be sought in [37] for Brownian motion and
in [81] for the Kramers problem; also in monograph series [35] for “everything”.

1.4.2 ‘Landau-Fokker-Planck’ (LFP) equation for plasma

It is interesting to see that the LANDAU equation (1.7) can be re-arranged into
the form of a three-dimensional FOKKER-PLANCK equation. However, the co-
efficients will then depend on the distribution function, i.e. the solution of the
equation itself, at any instant ¢. This is a nonlinear FPE.

Following the outline of a test-particle problem, as described above, one may
consider a charged particle moving against a thermalized background of elec-
trons and ions (bulk plasma) assumed to be in homogeneous equilibrium. Taking
the reservoir distribution ¢(vy; t) in (1.7) to be Maxwellian, one may derive ex-
act expressions for the coefficients in the kinetic equation, which then becomes
a linear ‘Landau-Fokker-Planck’ (LFPE) equation. This kind of physical situ-
ation was first studied in a completely different context by S. Chandrasekhar
[60], who considered a ‘test-star’ in a stellar population (cluster) in equilibrium
(1); Chandrasekhar assumed its evolution to be governed by an FP equation
and solved the two-body problem for a central potential in order to obtain the
exact form of the coefficients in it. This type of treatment was first applied to a
classical plasma by Landau [76] and L. Spitzer [109] and was later reformulated
in various forms by M. N. Rosenbluth et al. [99] and others®Z.

A similar calculation has been carried out for a homogeneous magnetized
plasma by Montgomery et al. [85] and, independently, by Baldwin [54] in 1977
and Hassan [71] in 1978. However, to our knowledge, no analogous study has
been carried out in the inhomogeneous plasma case, in the presence of an ex-
ternal field. This type of calculation is part of the aim of this thesis, as will be
discussed below.

31n a similar spirit, note the paper by J. Lebowitz and E. Rubin [78], who derived a Fokker-
Planck equation from dynamical principles, in an attempt attempt to bridge the gap between
microscopic laws and macroscopic behaviour, as related to stochastic Brownian-type motion.
The authors assume that the test-particle is well heavier than surrounding field particles:
M > mpg, and thus proceed on perturbation in the smallness parameter v = mgr/M < 1.
This expansion scheme is different from the one adopted later in this text.

32 Also see references mentioned in §38 in [3], where an analytical calculation, rather close
to ours here, is presented.
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As a matter of fact, a charged t.p. problem may refer to situations not
as simple as an electron moving against an ion background. We refer to the
situation appearing when heavy charged particles (typically « particles, i.e. he-
lium nuclei) are injected in compressed pellet plasmas, in inertial fusion-related
experiments, with the aim of deposing energy to the fuel material in both the
initial (cold and compressed) state and during evolution towards full ignition
and burn). « particle stopping is typically modeled by a FPE [10], [59], [79].
This picture is, in fact, closer to the original Brownian image of a heavy particle
erratically moving inside a medium of light particles.

Here we will present the exact calculation of the coefficients of the FPE
in both magnetized and unmagnetized electrostatic plasma case, based on the
formalism that will be developed later in this thesis. The older results (in the
latter case) are thus exactly recovered.

Let us close this section with an important remark. Sometimes, the ‘LAN-
DAU - FOKKER - PLANCK’ equation®? is referred to as the ‘linearized Landau
equation’. This may lead to the (erroneous) impression that it is obtained by
setting f = fo + € Af in the Landau equation. This is wrong: the fact that (the
LFP equation) is linear does not imply that the distribution ¢ is close to equilib-
rium. The linearization has been achieved here only by the assumptions that the
medium has a stationary distribution and that the test-particles do not interact
among themselves but only with the medium. Another type of linearization of
(the LANDAU equation) would be obtained if it were assumed that the distri-
bution of all the particles was close to equilibrium... (In spite of its similarity
with the equation one would obtain in this case, the LFP equation) describes a
completely different physical situation 3* .

1.4.3 Master equation in a test-particle problem

The general form of the master equation for a test-particle problem, as described
above, is obtained by substituting the reservoir distribution in the General-
ized Master Equation (1.9) with the homogeneous equilibrium df, i.e. setting
f(X2; t) = negeq(ve) (satistying: d¢peq = 0):

¢
Co{f(x,v; t), p(v1)} =n / dr /dxl /dvl LiLi(7) ¢peg(v1) f(x,v; t —1T)
0
(1.13)
where the indices were re-arranged appropriately; the index ‘zero’ is used to
distinguish this collision term from the one defined in (1.9).
The properties of this ‘linearized’ Master Equation (setting the founding
blocks of our study) will be discussed in the following section.

33sometimes also quoted, more correctly, as the RMJ (Rosenbluth-McDonald-Judd) equa-
tion.
34We simply chose to quote R. Balescu [3], here.
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1.5 Motivation of our study - discussion

The above introduction was necessary for the context of our work to be defined.
We may now discuss the aim of this study.

So far, the description of a test-particle problem was seen to obey a kinetic
equation of the form of (1.3), where the collision term Cy is given by (1.13) above.
Let us draw our attention to some issues of particular importance, involved in
the evaluation of Cy.

1.5.1 Which way to a Markovian equation ?

As pointed out before, this Master Equation is a Non-Markovian equation: see
the appearance of f(x,v; t — 7) in the rhs. Nevertheless, we are interested in
deriving a closed (kinetic) equation for f(t).

In principle, the solution of the (Liouville) evolution equation in phase-space
can be formally obtained [4], so:

flt—71)=et7f(1)
—LTt

where ¢ = U(t) is the time-evolution operator (propagator) appearing in the
formal solution of the complete Liouville equation, i.e. taking into account free
particle motion inside the external field and interactions with other particles.
However, as we have already said, this formal solution is practically useless,
since its explicit computation would demand detailed knowledge of the solution
of the N—body problem of motion itself!

A common way to overcome this problem is to assume that the zeroth order
solution of the problem of motion (i.e. in the absence of interactions) should
suffice in this order, since corrections due to the (weak) interactions should a
priori enter higher orders in A (do not forget that this is a A% theory). This
‘Markovian’ assumption amounts to considering:

flt—7)me T f(t)

Therefore, if the free (i.e. collisionless) problem of motion has an explicit an-
alytical solution, substituting into the master equation (1.13) will provide us
with an explicit linear kinetic operator, acting on the distribution function f(t).

As a matter of fact, the method outlined so far provides a linear differen-
tial operator of 2nd order, with respect to the phase-space variables {x, v}.
In general, the coefficients appearing in this operator are expected to be time-
dependent functions of {x,v}. A common procedure at this stage is an asymp-
totic evaluation of the kernel of the master equation (1.13), i.e. setting ¢ — oo in
the upper limit of the time integral (thus essentially obtaining time-independent
coefficients).

So far, we have defined the linear operator:

C@{f}:n/ dr /dXI /dvlLIGE?’TGE(;TLleiigTeiigT(lseq(Vl)f
0
(1.14)
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where f = f(x,v; t) 3°. The ‘tilde’ in INJ?, introduced in this expression (only),
is meant to point out that the external field is taken into account.

This kinetic operator, which was defined as the ‘©—operator’ in [46], [68],
was shown therein not to possess the desired mathematical and physical prop-
erties. In specific, its action does not preserve the positivity of the probability
distribution function f(x,v; ¢). This nuisance was not noticed for a long time,
since most studies were limited to the reduced velocity space {v}, where this
problem does not arise.

Part of this thesis will be devoted to the explicit construction of this operator
for electrostatic plasma and the study of its properties.

1.5.2 Influence of the external field

Remember that the action of the propagator in the GME has to be calculated
in the presence of the external field. However, this point has not been paid
due attention in the past®®; the influence of the field on particle trajectories has
quite often been neglected through physical arguments or even plainly omitted,
apparently because of the complicated expressions it leads to. Notice, as an ex-
ception, the formal studies in [46]37, [110]*®. Nevertheless, as we have previously
argued, the field has to be taken into consideration in the rigorous derivation of
a kinetic equation, even if its influence may be less important in certain physical
regimes (a fact which should then be rigorously justified, case by case).

1.5.3 Inhomogeneity effects

One more subtle point has to be discussed here. It should be noted, once more,
that the I'—space distribution function f may not only depend on particle
velocity v, but on position x as well. In the former case, i.e. for homogeneous
systems, one generally obtains precisely a (d + 1)— (velocity + time) variable
FP equation (in a d—dimensional problem, d = 1,2, 3), while in the latter case,
i.e. for inhomogeneous systems, one comes up with a (2d+1)—variable equation.

The delicate manipulations leading to the collision term in the latter case
differ widely from one method to another and are still a matter of (controver-
sial) discussion. Some authors prefer to start from the initial GME (1.9) and
develop x» around x;, while others plainly omit the non-homogeneous part in
the collision term. In this thesis, we shall rather adopt a procedure which was
first introduced in formal theories of quantum open systems. Further details will
be given in the text (see Chapter 5).

35Remember that L;(7) = elomell™ L; in (1.13); also, ¢eq is identically equal to
e~LiT Peq(v1) since O¢peq = Ed)eq =0.

36Gee e.g. [85], [86].

37See the discussion in 1-13 therein.

38See the discussion in p. 233 therein.
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1.5.4 Kinetic description of a test-particle problem

In an attempt to draw a rough picture of the purpose of this study, let us con-
sider, in a test-particle problem, the collision term Co{f;{Il}} acting on the
distribution function f = f(x,v; ¢). {II} formally denotes the set of parame-
ters which are characteristic of the dynamical problem, given the existence of
external fields, e.g. cyclotron frequency €2 for a uniform magnetic field, char-
acteristic frequency w for a linear oscillator etc. or plainly zero if no field is
present. Therefore, for instance??,

Cofo(v); 0} = ¢ {9}

denotes the homogeneous free-of-field case, while

Colf(x,v); 0} = C§{f} + SO f)

denotes its inhomogeneous analogue*®, and so forth.

Focusing on the description of plasma, let us clearly make our point con-
cerning the structure of the kinetic equation. The ‘Landau - Fokker - Planck’
equation presented previously obeys the form:

8 ¢ = C5" {p(v); 0}

in the unmagnetized electrostatic plasma case, or:

99 )
— =, v); Q
ov 0 {¢>( ) }
in the presence of a uniform external magnetic field. The external force Fex¢
is obviously the Lorentz force here. Both of these equations are mathemat-
ically sound. However, when an external EM field is present, some authors
extrapolate to an equation of the form:

9¢

L SV {e(v); =0} (1.15)

(i.e. not taking the field into account in the collision term). Furthermore, in
order to take into account space inhomogeneities and/or geometry, certain works
introduce phenomenological generalizations of the above equations in the form:

3f

at ¢ + m_l Fext

Of+vVf+m? Fext 5o =" {f; 0} (1.16)
(i.e. keeping only the homogeneous part in the collision term and adding a drift
term to the rhs), or (even worse) of the form:

0f

O f+vVf+mt Fext 5 = =c"{f; =0 (1.17)

39Remember that f = n¢(v;t) = C(V) in a uniform system.

40Gince this is a linear collision operator the modification in the in-homogeneous (space-
dependent) case will consist of a differential operator involving space gradients (V;). Obvi-

ously: Co{(v)} = SV {p(v)} since S {p(v)} = 0.
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(i.e. not taking the field into account in the collision term).

We therefore argue that the generalization of the above kinetic equations for
a non-uniform plasma (which is exactly our target, here) should definitely bear
the structure:

8tf + VVf + mfl Fextg = Co{f(X,V); Q}

ov
= S,V Q) + O f(x,v); 0

This is the form of the kinetic equation we are after.

1.6 Outline of the thesis

The outline of this thesis goes as follows.

First, in the next Chapter, this introduction is completed with a brief account
of notions and definitions specifically concerning the description of plasma as a
statistical-mechanical system.

The main body of this text is divided into four parts.

The first, Part A, is devoted to the general formalism to be used in the
kinetic description of a test-particle problem. In Chapter 3, we study the dy-
namics of a small subsystem off-equilibrium weakly interacting with a large heat
bath. Given an explicit dynamical problem (particle inside a force field), our
aim is the derivation of a kinetic equation, describing the evolution in time of
the phase-space density function. As a starting point we take the microscopic
equations of motion and we derive the associated BBGKY hierarchy of evolu-
tion equations for appropriate reduced distribution functions. A Non-Markovian
Generalized Master Equation (GME) is obtained and discussed. In Chapter 4,
a Fokker-Planck-type equation is obtained from the GME as a “markovian” ap-
proximation. This kinetic operator (the ‘©—operator’) is constructed explicitly.
All coefficients in it are explicit functions of the dynamical variables {x,v} and
the external field. Furthermore, all coefficients in it explicitly depend on one’s
choice of (i) the form of the inter-particle interaction potential V(r) and (ii)
the form of the homogeneous equilibrium distribution function of the reservoir
state ¢, (typically, yet not necessarily, a Maxwellian state). We show that, in
general, such an equation does not preserve the positivity of the distribution
function (d.f.) f(x,v;t). This problem, which is generic - regardless, that is,
of the particular dynamical problem considered - has been pointed out in the
theory of open quantum-mechanical systems where possible remedy to the sit-
uation was suggested. An analytical procedure introduced therein, essentially
amounting to time-averaging the evolution operator with respect to free-particle
motion, defines the ‘@— operator’, which we construct in Chapter 5, for an ar-
bitrary dynamical problem.

The second part of the thesis, Part B, consists in the application of the for-
malism in the kinetic description of plasma, which is embedded in an external
magnetic field. Considering a uniform magnetic field, the first (©—) kinetic op-
erator defined previously, is explicitly constructed in Chapter 6. The equation
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thus obtained is shown to be in agreement with previous results, where coeffi-
cients are expressed in the form of infinite series involving Bessel functions of
the first kind. All coefficients are functions of particle velocity and the cyclotron
frequency Q. Non-preservation of the distribution function positivity is again
demonstrated in this case. The construction of the second (®—) operator, in
Chapter 7, yields a new kinetic equation for plasma, including space gradients
and, in particular, a new diffusion term. This equation is thus suggested as
the basis of the detailed study of the properties of magnetized plasma, as com-
pared to the unmagnetized (Landau) case, presented in chapter J. In Chapter
8, an alternative method of derivation of the coefficients is proposed, by ex-
plicitly assuming the reservoir state ¢., to be Maxwellian and the interaction
potential V (r) to be of Debye type (and leaving the time 7— integration for the
end). This procedure leads to a simpler computable set of exact expressions (no
infinite series are involved); furthermore, this calculation (also provided for a
multiple species plasma) is also valid for a finite upper 7-integration limit ¢.

In Part C, the analytical results of the previous part are thoroughly ana-
lyzed. In Chapter 9, the coefficients involved in the description of magnetized
plasma are studied with respect to the physical parameters they depend upon,
including the magnitude of the magnetic field. In Chapter 10, we attempt to
solve the kinetic equation exactly, treating the charged-particle collision mecha-
nism as a 3-dimensional Ornstein - Uhlenbeck random process. The evolution of
observable quantities (i.e. average values of microscopic quantities) in time, un-
der the action of the new kinetic operator, is considered in Chapter 11. Finally,
the results obtained are summarized and discussed in the concluding chapter.

Finally, a critical discussion of related literature is carried out and some
concluding remarks are gathered in Chapter 12, ending this thesis.
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Chapter 2

Characteristic scales in
magnetized plasma

Summary

We briefly review notions and definitions involved in the description of plasma as
a statistical-mechanical system. Space and time scales are defined and different
plasma regimes are discussed, with respect to an external magnetic field.

It appears that the radical element responsible
for the continuing thread of cosmic unrest
is the magnetic field.

Eugene Newman Parker
in Cosmical Magnetic Fields
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2.1 Introduction

From a statistical-mechanical point of view, plasma is quite particular a system,
as compared to the standard image of rarefied gases. Charged particles interact
with external fields and with themselves. Long-range Coulomb-type interactions
are responsible for a realm of new phenomena (e.g. collective effects) but also
for a great deal of mathematical complication involved in a kinetic study of
plasma. The most common example of the latter is the notorious divergence of
the momentum transfer integral (Coulomb logarithm), which already appears
once one tries to solve the two-body problem for Coulomb interactions.

Plasma is characterized by different space and time scales, the relative mag-
nitude of which depends on physical parameters e.g. density, temperature, ex-
ternal fields etc. These parameters may vary over a wide range of values (see
figure 2.1), whose combination defines several plasma regimes. A theoretical
study of non-equilibrium phenomena therefore imposes a precise definition of
the region of validity of (and assumptions underlying) one theory or another.

The aim of this chapter is to provide a brief account of notions and physical
quantities which are necessary for the study of plasma as a statistical-mechanical
system. Notions introduced below are standard in plasma theory, and details
can be found in relevant textbooks (see e.g. [3], [22]); [38].

T T T T T

10°F  Relativistic Plasma T=mC? .
£
= 109 J
fusion
o -Dlusma laser plasma | fing;
3 0% M rsidel
5
o
3
a |07 | kev
5
@

Classical Plasma

10%- v
high pressure
[SPace —— i prassure| _discharge

10°FTevt——— L dischargeS|

10%

Degenerate
Plasma |

102

| . ) L
IO|o5 10° 0% 10%®°  10® |o3°n 10%%(m™®)

. L | T S
10° 10° 10° 10° 10° 10%®  (em™®)
Particle density

Figure 2.1: Plasma classification, according to the values of density n and tem-
perature T' .

2.2 Of dimensions and scales in plasma

In order to gain insight to the system studied, let us start by a simple dimen-
sional analysis. Since electrostatic plasma is an ensemble of interacting charged
particles (charge e i.e. —|g.| for electrons, +Z |g.| for positive ions etc.), we
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would expect any quantity defined to depend on particle mass m, charge! e,

density n and temperature (mean kinetic energy)? kg T'. Finally, certain scales

may be imposed by external fields; this issue will be addressed a little later.
Let us assume that any quantity Q will be of the form:

Q=m*n’T7¢

The dimensions of Q sought will impose the values of the exponents.

2.2.1 Length scales

First, let us try to define a quantity, say £, with the dimensions of length.
Simple dimensional arguments show that it should be equal to:

enl/6\9 B

Mean inter-particle distance (r) : The simplest choise would be to set
0 = 0 in the above relation; we obtain the mean inter-particle distance:

) = n

This length is characteristic of the average repartition of particles in space and
takes, of course, higher values for lower densities.

Distance of closest approach: Let us try to obtain a length which is inde-
pendent of particle density n. By setting § = 2 in the above relation; we obtain
the Landau length [2]:

This length can be interpreted (up to a numerical factor) as the distance between
two point charges which corresponds to a potential energy which is equal in
value to the mean kinetic (thermal) energy. It is also related to the value of
the collision impact parameter which would result in a deflection by 90 [5].
Particles in real charged particle ‘gases’ never get that close (not even a few
orders of magnitude as far!), so the inverse of this distance has been proposed
as a realistic alternative to infinity in the upper boundary of the (diverging)
Coulomb integral. Clearly, the small value of ry, is related to the validity of the
weak-coupling hypothesis (to be discussed below) .

! Notice, for the sake of rigor, that charge e should be replaced by e/ /€y everywhere in
the following, for consistence with the SI system of units (i.e. €2 = e?/eg); €y denotes the
dielectric constant in vacuum.

2Boltzmann’s constant kg will be omitted throughout this text.
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Mean-free-path A.,;,: Setting 0 = —4 in the above relation, we obtain the
mean-free-path:
TZ
(Amfp) = net
This length represents the average distance covered between two successive col-
lisions. It is related to the relaxation time, or inverse collision frequency; see
below.

Debye length rp: Setting § = —1, we obtain - up to a numerical factor - the

Debye length:
T 1/2
= (471' ne? )

This is a very important parameter for the study of plasmas, since it sets the
range of correlations between charged particles. In specific, the rigorous consid-
eration of the Poisson equation, taking into account charge distribution in space,
results in interactions being ‘screened’ by a factor e~"/"P (see e.g. [22], [38]).
This cumulative charge screening effect therefore defines, roughly speaking, an
interaction sphere, the Debye sphere, around the particle; rp will be the radius
of this sphere.

For all real plasmas, the Debye length takes values which are very small,
compared to macroscopic scales of the system; see figure 2.2. Furthermore, in
most plasmas, the order of magnitude of rp is well below that of A, f,; this fact
expresses the plausibility of the weak-coupling hypothesis (to be defined below).
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Figure 2.2: The mean-free-path A,,rp, the Debye length rp and the Larmor
radius pr,, plotted against temperature T'. Notice that the values of A, for a
given density may range from a few millimeters to a few kilometers, depending
on temperature 7. Also notice that rp may be quite close to pp, for higher
values of density and magnetic field.
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2.2.2 Time scales - characteristic frequencies

Let us now construct a quantity, say 7, with the dimensions of time. We are thus
seeking time scales, though the traditional plasma description rather consists in
defining typical frequencies, instead. These will be defined as the inverse of our
characteristic times.

Once more, simple dimensional arguments show that it should be equal to:

e nl/g § ) m 1/2
_ -1/3 (7
o (e s () o
Upon simple inspection, we see that the right-hand-sides of formulae (2.1), (2.2)
are related by a factor which is precisely the thermal velocity, defined by:

Uth = | —
m

Therefore, not surprisingly, all typical time scales 7 will generally be equal to
corresponding length scales £ over the thermal velocity vyp,.
Proceeding as above, we may impose certain values on the § exponent.

Inverse collision frequency v: Setting § = 0 in the above relation, we
obtain the mean time-interval between collisions (in a hard sphere picture),
most often defined through its inverse, which is intuitively interpreted as a

collision frequency v:

L T1/2 p1/3 vn

mt/z Amfp

It is related to the average time it takes the particle to cover a distance equal
to the average inter-particle distance.

Rigorously speaking, v has the meaning of a collision frequency only in a
hard-sphere system. A different definition of the collision frequency is more
familiar from studies of charged particle ensembles; it corresponds to the choice
of 6 = —4:

net Uth,

VCoulomb ™~ 5 S =
outom ml/2T3/2 TZ/ne4

(2.3)

This expression (up to a numerical factor) can be rigorously derived either by
combining the Coulomb momentum transfer integral with the mean velocity
provided by a Maxwellian distribution [22] of from kinetic theory [5], [51]. We
shall later see that this expression is indeed recovered in our study.

Plasma oscillation period / plasma frequency: Setting § = —1, we ob-
tain (up to a numerical factor) the period of plasma oscillation [3], [22] i.e. the
inverse of the plasma (Langmuir) frequency wp:

<4ﬂ'ne2>1/2 Vih
Wp = = —

m rp
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This is a widely discussed intrinsic parameter in plasmas, so we will not go
into extended comments. Let us remark, however, that its inverse w,, ! roughly
expresses the time the particle needs to cross a Debye sphere.

100

|

Ll

Figure 2.3: The plasma oscillation period (inverse plasma frequency w™!) for a
given density n and temperature 7'.

‘Landau’ characteristic time: Setting 0 = 2, we obtain a characteristic
time related to the distance of closest approach between particles (see above);
it is the only characteristic time which is independent of density n:

mi/2e2 g,

T, = ——F— = —
T2 rL

This is a very small time, compared to all the others (see scaling below).

2.2.3 Magnetic field-related scales

The existence of external magnetic fields may impose an additional set of space-
time- scales. In the case of a uniform magnetic field B, only its magnitude B is
relevant, so we need to define:

- the Larmor (or cyclotron or gyro-) frequency:

eB 27
e = me T,
where 7T, denotes the gyration period,
and
- the Larmor radius
_
PL = Q.

representing the radius of the particle’s gyrating motion.
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2.2.4 Dimensionless parameters

To end this dimensional investigation, let us seek the general form of non-
dimensional quantities, say II, characterizing an electrostatic plasma. Using
the same method as above, we find that all such quantities appear to be powers

of a fundamental one:
enl/s 0
=)

Plasma parameter: Setting § = 2 we find the plasma parameter® g:

e2 pl/3

9= T

This parameter expresses the ratio of the average potential energy e2/(r) to the
average kinetic (thermal) energy kg T (see discussion below).

Some authors prefer to set § = 3 in the above relation for II;, thus obtaining
a different (small) plasma parameter:

_ [en'/® 3 1 ()
Fr =\ 112 nrd, — \rp
We see that this parameter expresses the inverse number of particles inside a
Debye sphere; in most plasmas, it takes a very small value p, < 1, which makes

it a convenient candidate for a perturbation expansion parameter*. Clearly, the
two smallness parameters are related: p, = g*/%.

A magnetic-field-related dimensionless parameter: As obvious, the ra-
tio of all of the above mentioned characteristic lengths (or frequencies), com-
bined by two, provides a meaningful dimensionless parameter. Of particular
importance to us is the parameter, say A, defined as the ratio of the Larmor
radius to the Debye length®:

A=l =¥

'D Q.

The magnitude of this parameter is related to the influence of the external
magnetic field on all quantities involved in the description of plasma; not quite
surprisingly, it will often spontaneously appear in this text.

3The definition and notation used in literature with respect to this parameter may vary
by a multiplication constant or an exponent; here, we chose an expression which can be
conveniently expressed as the ratio of length/time scales defined above.

4Notice that p, (for § = 3) can also be interpreted as: p, ~ A,T,f;p = t (check by
making use of previous definitions); this implies, by the way: r4D = (r>3 Amfp, @8 can be
easily verified.

5The dimensionless parameter A denoted here should not be confused with the coupling

‘weakness’ parameter mentioned elsewhere.
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Notice that, from its very definition, a familiar reader may be tempted to
relate A, defined above, to the ratio of the speed of light ¢ to the Alfvén velocity
va, related to ion (denoted by ‘i’) frequencies:

QL 16 B
= —¢c=218x10"° —————
vaA o c X (i /AVT2 m/s

where B is the field, in Tesla, n is particle density (expressed in m~=3) and A
is the atomic mass [51]. One might thus erroneously deduce that A is obviously
well above unity: A; = 32 > 1. For instance, for a hydrogen plasma (A = 1)
with n = 102°m =3, B = 3T, v, is of the order of 0.015 ¢ so \; is roughly close to
45. This would immediately imply that motion is hardly curved within a Debye
sphere, since pr, & 457 p. This may be virtually true for heavy ions (only), in
practical terms; nevertheless, in a fully ionized electron-ion plasma, such that
ne & n;, the value of A\, for electrons will be lower than \; by a factor equal to
\/me/m;, so it may be around unity or even less.

2.2.5 Plasma regimes

Keeping the plasma parameter p, as the elementary dimensionless parameter
of relevance in electrostatic plasma, we may express all of the above quantities
(e.g. lengths/ times) in terms of a basic one (i.e. characteristic length/time,
respectively) times a power of u,. The following scaling naturally appears:

r L (ry € rp € Amsp

or the equivalent:
L L VT L w b L Voo

in the following orders of magnitude, respectively:
H§/3 < ug < M;l/B < H;4/3

As we see, the relative magnitude of the various characteristic quantities is
fized by the value of p, (i.e. for a specific value of n and T'). In presence of
a magnetic field, the appearance of one more space (time) scale, representing
the order of magnitude of the Larmor radius pr (the cyclotron period ~ Q1
respectively) defines certain regimes, depending that is on the position occupied
by this new scale in the above hierarchy.

A thorough discussion of magnetized plasma regimes can be found in [6]
(see Ch. 10 therein). Of particular importance to us, here, will be the relative
magnitude of magnetic field-related to charge-screening (Debye) characteristic
scales, expressed by A, defined above. Three distinct plasma regimes may be
defined, in terms of \ (see figure 2.4 9).

60f course, even though the heuristic picture in figure 2.4 conveys the qualitative idea of
our argument, it is not quantitatively correct, since large-angle scattering, such as depicted,
is excluded in the weak-coupling approximation.
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(a) A > 1 (vanishing-field-limit): the Larmor radius py, is far larger than
rp. In consequence, particle motion between collisions is practically rectilinear,
so the (unmagnetized) Landau-type approach may be sufficient in this case.

(b) A =~ 1 (finite magnetic field): the Larmor radius py, is comparable to rp
and particle motion between collisions is strongly curved. Spiral motion should
be rigorously taken into account in the calculation of particle correlations: this

regime is of particular interest to us, here”.

(c) A < 1 (infinite magnetic field): the Larmor radius py, is well below the
value of rp; particles gyrate a number of times between successive collisions.
The gyrophase plays no role, so a guiding center approximation [6] should be

sufficient in this case.

O/ =

Y —
S0 Cf)
T T

Magnetic field lines

—_—
wl

Figure 2.4: A heuristic sketch of the trajectory of colliding (negatively charged)
particles, in the presence of a uniform magnetic field. In between successive
collisions, particles rotate around the magnetic field lines. The typical length
scale of interaction (Debye length 7p) is compared to the gyration scale (Larmor
radius pr,). Three distinct regimes are depicted: (a) pr, > rp, (b) pr = rp and

(¢) pr L rp.

It should be noted that all of these situations may be present in today’s
real plasmas. As a matter of fact, different cases may simultaneously apply
to electrons and positive ions within the same plasma, as pointed out in the

previous paragraph.

2.3 The weak-coupling assumption (w.c.a.)

The dimensionless plasma parameter g defined above has a physical meaning
of major importance in plasma kinetic theory. Consider the ratio of the aver-
age potential to the average kinetic energy of a charged particle in the system

described so far:
2
(Epot) 2?_7’)
— 2, 2.4

"This regime corresponds to ‘Regime E’ defined in §10.1 in [6].
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We see that g precisely expresses the ratio of mean values of inter-particle inter-
action (‘coupling’) to kinetic energy. In an alternative, physically transparent,
picture, we see that g is inversely proportional to (nr%)%/?; remember that
N = nr}, expresses the number of particles within a Debye sphere; therefore,
the more these particles, the lower the value of g.

The vast majority of classical plasmas studied today are indeed weakly-
coupled (sometimes called ‘ideal’), meaning that the value of g is very small. In
fusion plasmas, for instance, we have typically a few hundreds particles inside a
Debye sphere, leading to a value of g of the order of 1072 or less®.

For the sake of rigor, let us mention that strongly-coupled plasmas do exist
(see e.g. [126] for an exhaustive recent report): a strong ratio of potential-
to-kinetic energy may result in the formation of plasma lattices primarily in
fusion device walls [120]; such plasma ‘crystals’ have indeed been reproduced
in laboratory and their formation is currently thought to be enhanced by the
existence of charged dust grains in the plasma (see e.g. [118]).

2.4 Non-dimensional kinetic description - relax-
ation time

It should be pointed out that the physical system described above presents a
cylindrical symmetry, induced by the presence of the magnetic field. We there-
fore expect this symmetry to be reflected in the form of the kinetic equation.
Furthermore, the system is naturally characterized by a number of intrinsic
parameters (particle density n, temperature T'), it is ‘equipped’ with an (long-
range) electrostatic interaction law and is subject to an external magnetic field
B. As extensively discussed above, these facts imply a set of space- and time-
scales characterizing our system. Therefore, the interplay between these scales,
reflecting the relative strength, for instance, of charge screening and gyration
phenomena, is expected to appear in all formulae. As mentioned previously,
different regimes may be defined and discussed, in terms of the value of these
parameters.

These considerations may be supported by a non-dimensional kinetic de-
scription of a test-particle problem. The generic - dimensionless - form of a
kinetic equation may be obtained by scaling all variables over appropriate char-
acteristic quantities (these may vary from one system to another); it is explicitly
presented in the Appendix. One more time scale appears naturally as a result of
this dimensional analysis: the relaxation time 7Tg, representing the typical time
evolution scale of the collision term. As argued in the Appendix (see §A), the
general form of Tp takes into account all the problem’s fundamental physical

81t is worth mentioning that certain authors have derived and investigated the properties of
binary collision integrals for so-called moderately dense or dense plasma, i.e. for small values
of the Coulomb logarithm A (beyond the weak-coupling hypothesis) [61], [95], [104], often
treating the notorious divergences by considering alternative cutoffs, derived from dynamical
arguments (see e.g. [79]); it has even been suggested that the w.c.a. may be the source of the
divergence; see e.g. [98]. We do not discuss those works here.
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parameters, including the external field. In the case of plasma, we obtain:
2,2 :
a,a’ mqy ,Uth7a _ My (Ta)B/z 1

- _ ; B A G (2.5)
R,plasma N eiei' kD To ni/2 eg (47T)1/2 To

where 79 is a time-scale, which may be related to the field, if any (e.g. Q.1 for
magnetized plasma, w;’ ! for non-magnetized plasma and so forth).

It is interesting to see that the inverse of the relaxation time, and there-
fore the order of magnitude of the collision term (see above), is related to the
Coulomb collision frequency vcouioms 0nd to the external field, through:

( a,a)—l _ ne*kp 1o _ net

TR m? o2, =Y AT (kp vtn T0) ~ Vooutomb§  (2.6)
(we have set a, ') where ¢ is defined as the quantity within parenthesis; see in
the Appendix for details.

2.5 Focusing on the system studied

2.5.1 Description

The physical system which we will focus on, consists of a charged test-particle,
say o, moving against (and weakly-coupled to) a homogeneous background
plasma consisting of a large number, say N, of particles (the ‘reservoir’ R),
embedded in an external magnetic field, taken to be uniform for simplicity.
Interactions (typically long-range) are assumed to be weak.

In an equivalent manner, one may consider a few (test-)particles, say N,
weakly-interacting with a background reservoir of N particles, in thermal equi-
librium. Due to fluctuations, these particles have found themselves in a dynamic
state (possibly inhomogeneous) off equilibrium; they are therefore relaxing back
to thermal equilibrium under the influence of the bath. Both subsystems are
subject to the external magnetic field. As N, < N, the test-particles are as-
sumed to interact with the bath, but not within themselves. Furthermore, one
assumes that these particles are so rarely distributed all around the (homoge-
neous) background plasma, that they will not influence the global equilibrium
state.

Throughout this text, a will denote the ‘species’ of the test-particle(s)? (mass
me = m, charge e, = e), while o' will denote that of the reservoir-particlesi®.

A plasma may consist of several populations belonging to ‘species’, say
{«'} = {o,B,7,... € {e,1i,...}}, i.e. electrons, ions, ... , of mass my and

9i.e. electron, ion, ...

1080, o may, or may (generally) not, be the same as /. To make things clear, this notation
only helps in describing (single-)particle dynamics (e.g. via the value of 2, in plasma). It
should not be forgotten that the test-particle subsystem forms a ‘population’ apart, since its
distribution (temperature, mean) is different from that of R-particles of the same species.
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charge eq'. We obviously have:
>N =N
al

while overall charge neutrality implies:

ZN‘J" eq =0

For instance, in a two component fully ionized ‘%X plasma (X being some ele-
ment e.g. hydrogen } H, helium 3 He, ...), consisting of electrons (m; = m., e; =
—e) and ions (nuclei, mo = Zmp+ (A —Z)my, e2 = +Z €), the above relations
read!!:

Nl +N2=N, Nl(—€)+Nz(+Z€)=0

implying:
Z

Z+1

Such is the general plasma picture. Nevertheless, in the name of simplicity in
description, plasma is often modeled as a collection of electrons moving against
a ‘frozen’ ion background. In this simplified picture, only collisions between
same-species particles are present, i.e. o = o/, since all particles obey the same
dynamics. From a technical point of view, the formulae for a single component
system (e.g. electron plasma) correspond to the equal-species term in the general
case 2.

Ny =Z Ny = N

2.5.2 Characterization

Let us focus on a set of parameters in order to clarify the region of validity
of this study. We have chosen a temperature of 7' = 10 KeV and a particle
density of n = 10" em ™2 = 10%2° m=3; these values are typical of fusion plasmas
[9], [43], [51] (see figure 2.1).
This choice implies:

- a mean inter-particle distance:

(ry=n"13=215-10""m

and
- an electron Debye length:

5 = vgn Jwp 743103 T2 =2 [m] & 7.43-10° m

' More rigorously, N should be replaced by Nt = N + N, in these formulae (however,
Niot & N since Ny < N).
121 a multiple species system the collision term C = C% has the form of a sum over particle

populations o/:
C — Ca — an,a’ — Ca,a + Z Ca,a’

af ol £a
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(T in eV, nin m~3). As a consequence, the plasma parameter is:

_ (& 3~244 108
Hp = % ~oaER

(or g = /;12,/3 =8.41079) , so this is a weakly coupled plasma.
The electron thermal velocity is:

vé, ~ 4.19 10° TY2 [m/s] ~ 4 10"m/s ~ 0.1 ¢

(T in €V) so a non-relativistic treatment should suffice.
Furthermore, the de Broglie length'® \yp = h/\/2mm kpT is :

A ~ 2.76 1078772 [em] ~ 3 107 %m ~ 107 ()

(T in eV; h is Planck’s constant) so this is indeed a classical plasma.
Finally, the electron Larmor radius is

p5 ~ 238107 T2 Bt [m] ~238107*B~! [m]

(B in Tesla, T in €V'). For a value of, say, B = 1T, we have p§ =~ 2.3810"2cm;
this implies a Larmor radius to Debye length ratio of only 3.2, which suggests
a rather non-negligible particle trajectory curvature within the size of a De-
bye sphere (hence the importance of taking into account the magnetic field in
calculating trajectories between collisions); see figure 2.4'4. The corresponding
quantities for ions would be:

ph ~1.021074 Z7LATY2B™Y [m] ~1.021072Z7YAB™' [m]

(B in Tesla, T in eV; Z: positive charge, A: atomic number, e.g. Z =2, A =4
in 3He.); this implies a Larmor radius to Debye length ratio of

i
PL — 13610 %2 ' An 2Bt
D
(B in Tesla, n in m~3), say typically p% /r%, = 136 for protium nuclei. This
ratio is related to the characteristic parameter dimensionless A that we will
define later in the text (ch. 8). Notice that A is independent of temperature:

P
)\E\@T’f: 2
D

(67
“p

Qoz

C

= (8T mqa )2 nl/? B/? (2.7)

See that \;/A. = \/m;/m. = 43, so positive ions are practically inside the
‘unmagnetized’ region depicted in figure 2.4a. For the parameter values listed
here, for instance, we have:

Ae =4.531 x B71, i =194.1531 x B~!

I3Remember that the condition for quantum effects to be of relevance is: A\gp ~ (r); see
e.g. in [127]. This condition is only fulfilled in exotic situations like astrophysical plasmas,
occurring in regions of gravitationally collapsing stars.

MQualitatively speaking, we are in case (b) therein.
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(B in Tesla).
In conclusion, this study refers to a weakly coupled, fully ionized, multiple-
species, non-relativistic classical plasma.

2.5.3 Assumptions of our study

From the discussion carried out so far, it has been made clear that kinetic theory
is a rather complex domain of physics and, so to speak, a very “ambitious” one:
it aims at drawing as much information as possible from a system derived via
a reduction of the complete data space provided by a real system to a smaller
sub-space one can manipulate. Information loss ‘ON THE WAY’ is inevitable
and what one desires is to compensate this loss with analytical tractability and,
ideally, plausibility of results via experimental confirmation.

The scope of this study definitely lies within the range of validity of specific
assumptions, more or less inevitable, some quite technical, yet all physically
sound.

First, only binary interactions are considered; three-body effects are ne-
glected, so plasma polarization is not accounted for, here!®.

Second, inter-particle interactions are assumed to be weak. Physically speak-
ing, this excludes the occurrence of large angle deviations during particle col-
lisions (see fig. 1.1b) and relies on the assumption of sufficiently low densities
and/or high enough temperatures (in a classical system!®). This weak-coupling-
approximation (w.c.a.) is indeed well-founded in fusion plasmas, as has already
been said; see the discussion e.g. in [7]. Exceptions to this w.c.a. (actually man-
ifested via small values of the plasma parameter or high values of the Coulomb
logarithm) are densely coupled plasmas in (i) laboratory, (ii) fusion device walls
(formation of dust quasi-lattices), (iii) some astrophysical situations (in strong
gravitational fields). These issues will not be treated here.

Third, correlations between particles at ‘the beginning of time’ (t = 0) will
be neglected. This is a kind of initial molecular chaos hypothesis, which is
assumed!” in most kinetic studies.

2.6 Conclusions

We have examined the characteristic lengths and times for magnetized plasma,
and defined different plasma regimes in terms of magnetic field scales as related
to intrinsic plasma parameters. This analysis was necessary for the dissemina-
tion of results to be presented in forthcoming chapters.

1530me attempts to take magnetized plasma polarization into account (via a BLG-like equa-
tion) [54], [70] are quite remarkable, yet limited to velocity space (they have not investigated
space-related phenomena at all). Note a study of the dielectric constant as related to Brownian
motion, in [56], [108].

16The image is somewhat different in the quantum case; see the pedagogical discussion in
[127].

ITand sometimes criticized, see e.g. the discussion in [58].
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The Formalism

When you go out for the truth,
leave elegance to the tailor...
Albert Einstein
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Chapter 3

Statistical-mechanical
description - the
Generalized

Master Equation

Summary

Relying on first microscopic principles, a general formalism is presented, dec-
sribing the evolution in time of the distribution function of a test-particle weakly
interacting with a large heat bath in homogeneous equilibrium. This method is
valid for any particular dynamical problem, provided that an explicit solution
of the ‘free’ (collisionless) problem of motion is given.

Nature, it seems, is the popular name
for milliards and milliards and milliards
of particles playing their infinite game
of billiards and billiards and billiards.

Piet Hein
in Atomyriades
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3.1 The model

Let us consider a test-particle (t.p.), denoted by o, surrounded by (and weakly
coupled to) a homogeneous background system of N particles (the ‘reservoir’
R). Both subsystems are subject to an external force field. Interactions will be
assumed to be weak (see in the previous chapter for definitions).

Let {X;} = {xj, vj} be the microscopic variables denoting the position and
velocity of the j—th particle (j = 1,2, ..., N,0). The Hamiltonian of the system
is of the form:

H=Hr+H, + AHins (3.1)

H, denotes the Hamiltonian of the test-particle, while Hr denotes the Hamil-
tonian of the reservoir:

N N
Ho=Y H;+3 S Vi (32)

j<nn=1

H; is the free (single-particle) Hamiltonian corresponding to the j—th particle.
For any single particle, being either the t.p. o or an R— particle (so j =
1,2,...,N or o here), the one-body Hamiltonian H; is, in principle, of the form:

1 .
H; = —mjvj- + ¢(x;)

2
where ® is a potential energy function accounting for the external field. In
case of a magnetic field, the field is “hidden” in the non-canonical phase-space
variable {xj, v;}, instead, through the standard transformation [17]:

1 e;
{Xiavi} = {Xi7 E[pl - zZA(Xl)]}
(Jacobian: J = m?) where A(x;) is the vector magnetic potential:
B(Xi) =V x A(Xi)

so that: 1 -
€; .
Hi(xi,pi) = 2—W|Pi - zzA(Xi)| = imwf

H, is of the same form. Finally, H;,; stands for the interaction between the

two subsystems:
N
Hip = Z Von
n=1

where Vi; = V(|xi —x4]) (6,7 = 1,2,...,,N,0) denotes the interparticle po-
tential energy, say typically related to a long-range, Coulomb-type interaction
potential. The random interactions between the t.p. and reservoir particles
surrounding it are ‘tagged’ by A, which may later be used as an expansion
parameter.
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The resulting equations of motion for the test-particle are:

1
x=v; v=—[FO%xv)+ AFiy(x,v;XRr)] (3.3)
m
where we used the notation: {x,v} = {x,(t),v,(t)}). The zeroth-order force
F(© is due to the external field, e.g. F(© = —2&(x) (or the Lorentz force
Fi = £(v x B) in the magnetized plasma case). The interaction force

P N N
Fint = —a—XZV(IX—XjI) = Fj(re) (3.4)
j=1 j=1

is actually the sum of interactions between o and R— particles surrounding it;
it is a random process, since the reservoir is assumed to be in homogeneous
equilibrium. Remember that the Coulomb potential is a central potential i.e.
V(r) =V(-r) =V(r).

In this model, the test-particle is free to exchange energy and momentum
with the reservoir. Therefore, the open subsystem represented by the test-
particle is neither conservative nor autonomous.

3.1.1 Single-particle dynamics

Counsider the zeroth-order (‘free’) problem of motion (i.e. (3.3) for A =0) in d
dimensions (d = 1,2,3). We will look for an explicit analytical solution of the
form®:

<
—
(=}
-
—~
~
~—
I

v+ % /t dt' FO@)y =M'(t)x + N'(t) v
xXO1) = x+ /t dt' v(t') = M(t)x + N(t)v (3.5)
0

with the initial condition {x,v} = {x(©(0),v(®(0)}.
This solution can be cast in the form:

(00 _ (M) N (00 _
x00=(Lu) = () w0) (o) =E0X00 @0

implying
E(0)=1

LProperly speaking, one has:

zi(t) = Mijx;(0) + Nijvi(0) ,  wvit) = Mj; z;(0) + N/;v;(0)

az%) 0220
Mi;(t) Ni(t) N\ _ [ “oa; “ov
ML) Nyt )T\ P aviof(t)
Oz Ov;

(the derivatives are evaluated at {x, v}); this is rather obvious in a linear problem. In general,
(3.6) may be viewed as a linearized solution of the (possibly nonlinear) problem of motion.
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- M(0) = N'(0) =T  M'(0) = N(0) = 0

(obviously, the prime denotes differentiation with respect to time).

The form of the d x d matrices {M(t),N(¢)} depends on the particular
aspects of the dynamical problem taken into consideration (provided that an
explicit solution is known); therefore, these matrices definitely depend on the
external field.

For the sake of clarity, a few explicit examples are given in the following.

(i) Free motion

In the free-motion limit (in the absence of external field), there is no external
force: F(©) =0 (cf. (3.3)) so

{z:(t),vi(t)} = {&:s + vit, v;} i=1,---,d
(with the initial condition {z,v} = {z(0),v(0)}) i.e.
M;; = 045, Nij = 0;5t
and thus
My =08, =5
(cf.(3.6)).

(i) Harmonic oscillator in 1d

Consider a particle moving in a harmonic potential. The force felt by the particle
is: F(©) = —mw?x so the free equation of motion (i.e. (3.3) for A = 0) yields
the solution:

()= (st <2 ) (50)) == ()

Comparing this formula to (3.6) the meaning of M (t), N(t) (simple real func-
tions of time, in 1 dimension) is quite obvious:

M(t) = coswt N(t) =w tsinwt

Note that taking w — 0 one recovers exactly the above free-motion limit.

(iii) Charged particle motion in a uniform magnetic field

Cousider a charged particle (of species a € {e,i,...}, mass mq, charge e,)
moving in a uniform magnetic field B assumed to lie along the z— direction i.e.
F( is now the Lorentz force

FL:e?a(va)Est(vxi)
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where we defined:

B
Q:QQZM, P ] (3.7)

MyC leq]

The problem of motion:

%Cg) - (ﬁ(vvxm) - (sﬂ(vvx:z))

yields the well-known helicoidal solution:

z(t) = x4+ Q' vu,sinW + s Q7 v, (1 — cos Q)
y(t) = y— 59w (1 - cosQt) + Q7 v, sinQt
2(t) = z+ vt

vp(t) = vy cosQt + svy sinQt

vy(t) = —svgsinQt + vy cost

v.(t) = v, =const.

which can be expressed as

<:i215z;>=<1 azo <:> o)

Therefore, we have:

[e=)

—1, -0
cosQt s sindt 0
N'(t) = —s sinQt  cosQt 0
0 1
¢ sin Qt s (1—cosfit) O
N%(t) = / dt' R*(t) = Q' | s (cosQt — 1) sin Ot 0 (3.9)
0

0 0 Ot
(compare with (3.6)). Notice that (3.9) satisfy:

Ri(t)=R(-t)=R¥(t) Vte®R
however,
L) £N(=t) = -NT(t) = -N@®R'(t) Vte®R

Once more, notice that for & — 0 we obtain the correct free-motion limit (see
in §3.1.1).

Note the way the gyro-frequency (2 is defined here: €2, > 0; the influence (if
any) of the sign of the charge e will therefore be traced through its signature
‘sq’ throughout the formulae.
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Group properties

In a generic manner, the 2d x 2d matrix E(¢) in (3.6) satisfy the condition:
EGE({') =E(t+t) Vit'eR (3.10)

implying
E(-t) =E™'(¢t)

The group property (3.10) implies a number of relations for the d x d sub-
matrices; in particular, if M(¢) = I (as in the first and third cases above) we
have:

N'(#)N'(t) = N'(t+t) N(t) + N(#")N'(t) = N(t+1t') Vi, t' e R

thus, setting t’ = —¢:
N (t) = N'(—t)

yet
N(—t) = -N{)N'(=t) #N"*(t) VteR

The explicit examples provided above fulfill all these requirements, as can be
readily checked.

3.2 Statistical formulation
Let us define the (6N + 6) x d (total) I'— space of the system:
I' ={xi,vi,i =1,2,..,N,0} ={X,,Xr}
and let D be the total ((N + 1)—particle) phase-space distribution function:
D=D(I'rUT,)=D({X;,j=1,2,..,N, o}

which is normalized to unity: [dI' D(I') = 1.

3.2.1 Liouville equation

The equation of continuity in phase space reads:

oD 0

o tax i) =0

where D = D(X;) (Xj = {xj,Vvj}) and Fj denotes {%, %} or, precisely

oD oD 0 1
o Vg T oy (m D) =0 (3.12)
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0% _ g
axX; —
pressible fluid’, e.g. all examples in §3.1.1) this linear equation (the LIOUVILLE
equation) can be cast in the form:
oD
ot

which reflects the form of the Hamiltonian (3.1). The operators in it are defined

by: . . N
L= Z L(no) + Z ZLJ”’ Lyt = Z Lon (3.14)
n=1 n=1

j<n n=1

(a summation over j is understood). For a system where (an ‘incom-

=LD=(Lg+Ly+ALin) D (3.13)

where L is the single particle ‘free’-Liouville operator in the presence of the

field:
0 1 0
W=y, — - —FlO = 3.15
J Vi an m; J an ( )
Note, once more, that j denotes either an R— particle: j = 1,2,..., N or the
t.p. 0. L;j is the binary interaction term:
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(3.16)

3.2.2 Reduction of the Liouville equation

The total distribution function D contains the amount of information one needs
to describe the system, so complete knowledge of it implies complete knowledge
of the trajectory of the system in its phase space. However the full Liouville
equation is practically impossible to solve for D (either analytically or numer-
ically, given the number of particles in a real system) so one has to resort to
information reduction methods (averaging techniques, projection operations,
...) through which the loss of information is compensated by simplicity and
tractability in description; this problem actually lies in the heart of kinetic the-
ory.

Reduced distribution functions - definitions

By averaging D over the coordinates of all but one, two, ..., p particles we
obtain the 1—,2— ..., p— particle reduced distribution functions (rdf). This is a
standard procedure which can be found in literature (see e.g. [4]). Nevertheless,
the procedure adopted here is different from the standard one, in the sense that
two kinds of such functions are defined, say o— and R— rdf, depending on
whether or not the test-particle is included within the p-tuplet considered (i.e.
whether I', C I', or not). For instance, the o-1-particle rdf reads:

£i(X) = / drRD(T)
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whereas the R-1-particle rdf is:
F¥(Xa0) = No [ dr.D(D)
As our system may consist of different distinct populations e.g. electrons, ions,
in the case of a multi-component plasma, we used the superscript a; €

{e,i,...} to denote the species of the j—th particle. In a similar manner the
o-2-particle rdf reads:

FOX, X% = Na/deQJD(F)
while the R-2-particle rdf (s) read:

F;,G(X1a7xza) = Na(Noa —1) /drf",?"D(F)

F;’ﬁ(X]_(X’X-zB) = NaNg/d]_'Ca72ﬁD(F)
(for R-particles of the same or different species respectively) i.e. more concisely:
FEO(X,, Xs®) = Na (N 5a,5)/dr;a,2ﬁ D(I)
I'fa; gay  ne. denotes the part of phase-space I' = I'y U I'; which is com-

plementary to I'ja; ges, . Nen, Le. ch”,gazy I' = I'tas ey, pen. In
general the o-p-body rdf is defined as:

an
.n

T “rp—1 p+1

FX X0 X7 = G [ X XS X3 DX

for a p-tuplet containing p. electrons and p; ions (p, + p; = p — 1) whereas the
R-p-body rdf is defined as:

F;‘(Xlal,...,Xz:l,XgP) = Chp. p: /dxzildxzigl...dx%” D({X?’})
for a p-tuplet containing p. electrons and p; ions (p. + p; = p). Note that f; is
normalized to unity, while all other rdf’s are normalized to the corresponding
combinatorial factors:

N,! N;!

Cp. p. = AN AN: =
Peobt Pe 7P (Ne = pe)t (N; — pi)!

Since fi is a real function satisfying

0<fi /dI‘lfl:l

it can be interpreted as a probability function density. Obtaining a closed
equation with respect to f; is our final goal.
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Evolutions equations for the rdf - the BBGKY Hierarchy

The p—particle reduced distribution functions are governed by a system of
(N+1) coupled evolution equations, which are readily obtained by appropriately
integrating the complete Liouville equation. One needs to take into account the
conditions:

0
/dijg.)D:o

/ dX;dX; Ly D=0

0
/dv-iD—o (3.17)
J8Vj o )

as well as the normalization conditions in the previous paragraph. Even though,
as explained above, our definition of rdfs (for a test-particle problem) is not
identical to the standard one appearing in textbooks of Statistical Mechanics,
the method of the calculation is quite similar and can be found therein (see for
example in [4], [22]) so we omit details here.

The first members of the hierarchy obtained read:

@=L AX) = XY [aXs Lo 7 (XX

a'=e,i
@ — L — L) f59 (X%, X4 P) = AL f57(X%,X407)
5N / X8 (Lys + Lis) £27 (X2, X1 ?, X5®) (3.18)
a'=e,i

for the o—rdfs, whereas for the R—rdfs we obtain:
(0 — L") FY (X7) =
Y /dxg’L12 FO (X2 X, +A/dXJL01 e (xe X,
a'=e,i

0 — LV = LY PP (XE Xy7) = A L1y F2(X2,X,Y)

+ A Z /ng‘»"(ng+ng)Ff’ﬂ’“’(X“,XzB,Xao")

a'=e,i
+ A/de;(Lh, + Ly, fOP7(X%, X537 Xg7) (3.19)

The BBGKY hierarchy thus obtained is strictly equivalent to the initial Liouville
equation and, inevitably, just as difficult to solve. We therefore have to adopt
an appropriate approximation, which will allow us to truncate the hierarchy
equations at some point and thus obtain a closed equation for f.
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3.2.3 Cluster expansion - truncation of the BBGKY hier-
archy

At this stage it is appropriate to define a set of p—body correlation functions,
which contain the information of the deviation from the non-interacting-particle
image. For instance, the 0—2-body (i.e. o + 1%) correlation function reads:

go = go‘ﬂ(Xo‘,Xlﬁ) reads:
g™ (X X0) = (XX - R XOF (X (3.20)

An analogous expression holds for the R—2-body (i.e. 2% + 1},) correlation
function G5 = GﬁvV(Xlﬁ, X27). In the same way we define 0— and R— 3—body
correlation functions and so forth. This cluster expansion (often quoted as the
Mayer expansion [32]) allows us to express to obtain a modified form of the
lowest members of the BBGKY hierarchy, in terms of rdfs and correlations.
Distinct orders in A may thus be separated and then corresponding equations
may successively be solved.

A standard procedure at this stage consists in assuming that the mutual
interaction between particles is very small, as compared to their kinetic energy.
This implies the existence of distinct orders of magnitude, in terms of powers
of a smallness parameter, which is related to the value of the plasma parameter
Hp = eanlT/a 2. The condition p, < 1 is indeed met in a majority of plasmas of
interest, as we mentioned before. The weak-coupling approximation is exten-
sively discussed in [5], [46]; here, we shall adopt the truncation scheme suggested
in pp. 101-102 of the former (also see pp. 56-58 in [7]).

We saw that, as implied by the form of our Hamiltonian (reflected in the
structure of the Liouville equation, as well), the free and the interaction Liouville
operators (L(®)) L;,) appear in orders A\° and A! respectively. We will now
assume that the 1-body rdfs are of the order A°. The correlation function g*?
is expected to be of the same order of magnitude as the interaction potential,
i.e. go ~ A, while higher-order p—body correlations (p > 2) are assumed to
be of higher order i.e. g, ~ A**. The hierarchy equations can therefore be
re-formulated using a scaling of the form:

G2~,\1(~;2 , 92N>\1§2

(the tilde will be dropped in the following).

We shall now seek the equation obtained in order A%, so terms of higher
order will be neglected. The truncated version of the first two members of the
hierarchy now read:

@ -LV) fX) =2 ¥ / dX$ Ly F* (XY) £(X)

a'=e,i

+A2 Y / dX% Lyy g (X, X1%)

a'=e,i

2See in the previous chapter for definitions. Also see the discussion about smallness pa-
rameters in plasmas defined through simple dimensional arguments, in [3], ch. 2.
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0 — L — L{V) g*8(X, X1) = Loy F*(X1) f&(X) (3.21)

For the sake of simplicity, we dropped all function indices, so f, F', g henceforth
denote f1, Fi, g, respectively. Contributions of order higher than \?> were
omitted in this system of equations. In particular, 2-body correlations were
truncated at ~ A! since higher orders do not enter the equation for f.

According to the statement of our test-particle problem, we shall consider
the reservoir distribution function F' in the above formulae to be in a stationary
state, i.e. 8;F = 0. So, F* (X;) will be taken to be equal to N‘;" Q‘q’ (v1) =
N ¢>§q’ (v1). The homogeneous state ¢eq(v1) is typically, yet not necessarily, a
Maxwellian state. Rigorously speaking, ¢ may be some other function of the
conserved quantities in a specific problem, i.e. {v;} (i =1,...,d) in free motion
or {vy,v)} in magnetized plasma.

At this order, the lowest two members of the hierarchy are therefore de-
coupled from the rest. We may therefore proceed by solving the second of the
above equations and substituting into the first. This will provide us with a
closed equation with respect to f. Note that only binary (i.e. 2-body) inter-
actions are retained in this picture. Accounting for higher-order (collective)
contributions and dynamical screening effects would impose keeping at least 3-
body terms (thus obtaining a BALESCU-LENARD-GUERNSEY-type equation [3]).
Such a level of description goes beyond the scope of our work.

3.3 Solution in successive orders in A\

3.3.1 Zeroth order - free LIOUVILLE equation
The “free” (1-body) Liouville equation (i.e. (3.21a) for A = 0):

0 f(X) = LY f(X) (3.22)

o

or (cf. (3.15))

of L of L 1o 0 _
ot " Vox Tmt v

can be solved formally. The solution reads:
f(t) = et £(0) = U (1) £(0) (3-23)
The ‘propagator’ U (t) satisfies:
U(t) U(ta) =U(ty + t2)

and, since
Uuo) =1

setting to = —t; = —t gives
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The above relations provide the trajectory of the system in phase space,
given the existence of the external field. The solution for f(t) satisfies Liouville’s
theorem?, so the value of the distribution at {x(0),v(0)} at the instant ¢ equals
its value at {x(—t),v(—t)} for t = 0:

Ut) f(x,v) = U®) f(x,v;0) = f(x,v;t) = f(x(=t), v(=1);0)
= f(x(=t),v(=1)) (3.24)
The propagator formalism is extensively discussed in [4], [5] in general; an

exhaustive study of the generator of charged-particle motion in an external field,
in particular, exists in [82].

3.3.2 First-order in \: VLASOV term

In order ~ !, relations (3.21a, b) are still decoupled. (3.21a) now reads:

@=L FX) =2 > / dX% Loy FY (XY £(X) (3.25)

a’'=e,i

Using definition (3.16) and the relation (3.17d), the right-hand-side can be re-
arranged into the form:

rhs = <8x Z /dX“ (x —x1) F2 (x1)> 188V (X)

lanf( ) 9

m Ox Ov

1 0
—Eme(X)a—v

In the case of electrostatic interactions, this results in a mean ( Viasov) electric
field E,,f(x) = Fpyr(x)/e, induced by dynamical charge-screening.
Equation (3.25) thus becomes the celebrated VLASOV equation [3]:

of  ,of )9
5 T Vax T (me()+F 5 = 0

In a test-particle problem, however, note that the mean-field potential, giving
rise to this extra (‘self-consistent’) term at order ~ A', disappears® once the
reservoir is assumed to be in a uniform state:

/dvldX]_V(X—X]_) %qﬂl(vl) = 0

fX)

fX)

so no contribution to the dynamics of our test-particle is obtained at this order.

3See e.g. p. 109 in [5]. As a matter of fact, continuity in phase space is ensured, under
certain conditions, by the foundation of statistical evolution laws; see detailed footnote 7 in
§1.3.

4In order to see this, shift the integration variable x; to r = x —x7y; the space integral then
readily vanishes, for reasons of symmetry (provided that the potential V' is not divergent, as
is, in fact, the case in the Coulomb potential; see elsewhere in this text).
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3.3.3 Second-order (~ A\?): the Generalized Master Equa-
tion

In order ~ A?, one may solve the second equation in (3.21) and then substitute
into the first in order to obtain a closed equation in terms of f. This is a more
or less standard procedure (cf. [5]), which we will outline briefly.

Equation (3.21b) contains a homogeneous linear part (left-hand-side) and a
driving (source) term (right-hand-side). The formal solution for g(¢) = g®%(X, X1; t)
reads:

g(t) = UL)() g(0) + A / t dr U () Loy F(X1; t —7) f(X; t—7)  (3.26)

) )

where U (01) (t) is the two-body propagator:

Usl () = exp(LY + L)t = UL (1) UL (1)

in the presence of the field.
Neglecting initial correlations (i.e. setting g(t = 0) = 0) and substituting
into (3.21a), we obtain the non-markovian Generalized Master Equation (GME):

atf(xav;t) = L(O) f(X,V;t)

t
+A2n / dr / dxy dvy Ly U (7) Ly deq(va) f(x, Vit —7) (3.27)
0

or

of of 1 (0)8 B
8t+v8x+mF ov

t
n/o dT/dxl dvy Ly UY)(T) Lt $eq (V1) f(x, V5t —7)
c{f}

(3.27-bis)
(A was dropped for simplicity). A summation over particle species ' is under-
stood in the rhs if appropriate. By f = f(x,v), Ff’l (x1,v1) (= N ¢ (v1)
here) we denote the distribution functions of the test-particle and one (any) par-
ticle from the reservoir (of species, say, « and ' respectively); n = ny = % is
the particle density; Lo = LEP) is the “free” Liouville operator defined previously
(see (3.15)); the binary interaction Liouville operator L; = L, was defined in
(3.16). Remember, once more, that the mean-field (Vlasov) term, in order !,
disappeared since we assumed the reservoir state to be in a homogeneous equi-
librium state.
A point we want to stress is that, in principle, the external field appears in
the collision term C{f} (through the action of the propagator, cf. (3.24)) and
not only the left-hand-side (i.e. the zeroth-order Liouville operator). Therefore,
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one a priori expects the field to enter the expressions for the coefficients in the
final kinetic equation. As discussed in the Introduction, this fact has often been
neglected in previous studies.

Equation (3.27-bis) provides the generic form of a Generalized Master Equa-
tion (GME) equation for a test-particle problem as formulated above. It is a
Non-Markovian integro-differential equation: the evolution of f at the instant ¢
depends of its value at all previous times through f(t — 7). Certain ‘markovian-
ization’ procedures have been proposed in the past, leading to a closed equation
in terms of f(t). In the following chapters, we shall construct - and compare -
two of these kinetic operators, both leading to a ‘Markovian’ kinetic equation.
This equation will be a linear partial differential equation (PDE) of second-order
in the phase-space variables {x, v}, since the reservoir distribution function was
taken to be stationary.

Equation (3.27-bis) is therefore the final result of this section, and will serve
as the basis of the analysis that will follow. However, in order to clarify the
features of our test-particle model, we will grasp the opportunity to present,
in the next section, a brief study of the statistical properties of the random
interactions between the test-particle and the reservoir particles surrounding it.
One may thus attempt to sketch an analogy between our formalism and existing
stochastic theories based on force autocorrelations [7], [49].

3.4 Properties of inter-particle interactions

Let A be an arbitrary function of the microscopic variables: A = A(x,v; Xg).
We define its average over the (homogeneous) reservoir state or({xi}):

E{ A } - (A, UR)R - dXR O'R(XR) A (328)
I'y
5. Let us now consider the random interaction force Fin¢(t) felt by our test-
particle, due to the existence of the thermalized environment around it.

3.4.1 Interactions as a random process

Interactions between a particle and its thermalized environment are purely ran-
dom. Even though they were defined in a deterministic manner, in (3.4), the
test-environment interaction mechanism can be viewed as a ‘stochastic’ process.
Nevertheless, information on the statistics of this process may be drawn from
our microscopic model, and does not have to be added via phenomenology.

51f A is a sum over R- particles of single-particle-terms i.e. A(x,v;Xg) =
Z;VZI A(x, v; X;), this ensemble-average becomes equal to

n/ dvi ¢eq(vi) A =( A)r (3.29)

(n is particle density); we have taken: og = VLN H;.VZI Geq(v))-
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Interactions are characterized by a vanishing mean-value:
(Fint(t)) p = E{Fint(x,v; )} =0
The covariance C reads:
C = C(x,vit1,t2) = (Fint(t1) Fint(t2))r = E {Fint(t1) Fint(t2)}
= /F dXpr 0r(Xg) Fint(t1) Fint (t2)
&

= "/F dx1dv1 ¢eq(V1) Fine([x(t1) —x1(t1)]) Fine (I%(t2) — x1(22)])

= o[ v sute) (- 5oV (xtt) - a0

<_5§%E5vqxug-—xlﬁﬁb>

- / dr / V1 Geg(v1) ax(;&g;)) ® 825253)) (3.30)

In the last part we have shifted from x tor =x—x; ¢ 7.

3.4.2 Force auto-correlations - the general case
Let us introduce the Fourier transform (F.T.) of V (r):
~ 1

= r V(r e~ tkr(t) .
Vk = (27r)3 /d Vir(t)) (3.31)

so that
vmm:/&&éwﬂ

Note that V is a real function V(r) € R, so its F.T. is a real function Vj, € ®
itself. Furthermore, notice that V' is an even function of r (it actually depends
on its module r, only) :

V(-r) =V(r) =V([r|) =V(r)
Therefore, the F.T. has the property:

Vk = ka = ‘7(|k|) = Vk

SGenerally, taking the reservoir to be in a homogeneous equilibrium state op =
VLN H;V=1 dMaz(vj) (typically a Maxwellian state) and using definition (3.4) - remember

that F(ry;) = F(—ryj)- and expression (3.32), one may prove that odd moments of Fin¢
vanish (i.e. (Fin¢(t1)...Fint(t2n+1))r = 0), from symmetry arguments (in the Fourier inte-
grals involved), while even moments ((Fint (¢1) ...Fint (t2n))r) can be expressed as symmetric
cyclic combinations of the correlations C(t;,t;) (4,5 = 1,2,...,2n). Interactions represent a
Gaussian process [15] with zero mean.

"For a ‘pedagogical’ review of the formalism involved in the statistical description of random
functions see [47] (chapter 2 therein).
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The interaction forces can now be expressed as follows:

9 0 X 7 ikr(ty
Fuelh) = Fuue(rlh)) = 5oV x0) = 50 /dk T eikr(ty)
= /dk (ik) Vi etr(ty) (3.32)

In a similar manner:

Pu(ta) = [ (1) Vi 5 = [ ¢ (i) Vi 00 ¥ et =xC0)

/dkl (Zkl) ‘N/k/ eik'r e—ik’Ar
where we have set r = r(¢;) and
Ar(tl, tg) = I‘(tl) - I‘(tg) (333)

Notice that only the real part contributes to the above formulae, since the
interaction potential forces (its derivatives) is a real function.
Substituting in (3.30), we have:

C=n / Avi ¢eq(v1) / dr / dk / dk' (iK) ® (i k') Vi Vig e~ FK)r ik Ar
(3.34)
Note that C = C(v; field) is a symmetric real matrix, i.e. C; = Cj;.
A very important comment has to be made here. The relative displacement
Ar(t;,t2), appearing in the exponential, was defined in (3.33). It contains all the
information regarding the influence of the external field on the auto-correlation

function. Its exact form can be evaluated in terms of the solution of the problem
of motion, by making use of (3.6):

Ar(tl,t2) = [X(,(tl) — X5 (tg)] — [Xl (tl) — X1 (t2)]

{ M2 (1) — M2 (£2)] xo + [N2(t2) — N (t,)] vg}

—{ [MS'(t1) — MY (t2)] x1 + [N§ (t1) — N§ (£2)] vl}

As the second pair of brackets contains exactly the same combination of variables
as the first, but concerning the R—particle ‘1’, we will henceforth express this
kind of expression as:

Ar(ty,ty) = {[M?(tl) — M (t2)] %o + [N (t1) — N2(t2)] va} (1 — Pc,a,la,)

(3.35)
where we defined the permutation operator P; :

Pio f(X1, Xo) = (X, Xn)
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(for any function f whose argument depends on particles 1,2).

The appearance of Ar in (3.34) is actually the signature of the external
field. A simplifying procedure, quite often used in the past (and which will not
be adopted here!), consists in evaluating the exponential along free trajectories,
that is plainly neglecting the field in the collision term (see, for instance, in [90],
where a relation similar to (3.37) was derived in the presence of a field and was
then computed as if the latter were not there).

It is interesting to point out that since C(7) is by definition a real matrix,
only the real part (cosk Ar) of the exponential is relevant; furthermore, Cj; is
a priori even in the time argument 7:

Cij(=7) = Cy5(7)

[4]. We shall see that this condition is satisfied in the magnetized plasma case.
The evaluation of the form of (3.30) from microscopic laws is strongly simpli-
fied if two special (yet not so restricting) assumptions are made, independently.

(i) Force auto-correlations - simplification 1

First, let us assume that M(#) is the unit matrix I, i.e.
Oi(t +t)/0w;(t) = b

(t,t' € R) which is indeed the case for a variety of systems of interest, for
instance in the first and third examples considered in §3.1.1 (i.e. plasma in a
uniform magnetic field and free motion).

In this case, we may carry out the r— integration in (3.34):

C = n / dvy Geq(v1) / dr / dk / dK' (i k) @ (i K') Vi Vi e~ H0eHr ik Ar
= n/ dv, ¢eq(vl)(27r)3/dk/ dk' (ik) ® (iK' )ViVied(k + k') e K Ar
= n / dvy ¢eq(v1)(2m)?® / dk (i k) @ (—i k)V;Z AT
= n(2n)? / dvi ¢eq(v1) / dk k @ k V;2 ¢'kAr (3.36)

where we have used the property:

/ dre®r = (27)3 §(K)

(K € ®?).
Now, substituting from the zeroth-order solution (3.6) we obtain:

co = (21)° > na / dvi 62, (v1) / dk VP k @ k e IN ()= N"(E2)[v(0)

e~ HINT ()-NF ()Va(0)(3.37)
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Setting t; =t + 7, to =t in the above formula, so that ¢; — ¢, = 7, and making
use of (3.6), (3.11), we have:

[N; (¢ + 7) = N3 (§)]v3(0) = N3 (1) Nj™ (£)v;(0) = N;* (1) v3(t)

(j = 0,1) so (3.35) simplifies as:
Arnt) = [N3le+7) ~N2O] vo (1-Pru, )
= N7)v(t) <1 - Pgmla,) (3.38)
and relation (3.37) above becomes:
C(r) = (21)* ) na / dvy ¢% (V1) / dk T2 kok RN (¥ =ikNa™ (1) va
o

(3.37-bis)
Therefore C(t1,t2) = C(t1 —t2) = C(7), so the interactions represent a station-

ary random process®.

(ii) Force auto-correlations - simplification 2

A second simplifying hypothesis consists in considering interactions between
particles of the same species (or a single component system e.g. an electron
plasma, @ = ). In this case, all particles obey the same dynamics:

N1 (t) = No(?)

so the integrand in the correlation function comes out to be a function of v—v, =
g:

C=2) (v; 1) = n(2r)’ / dv1 eq(v1) / dk VEeMNO ko k  (3.39)

3.4.3 Comments

Notice, in all the above formulae, the explicit dependence of the correlations
on the specific features of the dynamical problem, and namely on the external
field.

Relation (3.36) (or its simplifications that follow i.e. (3.37-bis), (3.39)) pro-
vides a general formula for the study of a random ( ‘stochastic’) multi-component
open system with long-range inter-particle interactions. We see that this for-
malism establishes a link between the process statistics and the mechanism of

81f the above simplifying hypothesis is not satisfied, i.e. when M;(t) # I (cf. §3.1.1),
a lengthier expression, of no interest here, replaces (3.37): C = C(x,v; field); once more,
that expression may be simplified for a single-component system. However, in this case, the
process is presumably not stationary any more.
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collisions itself, through parameters like:

- the external field (if present),

- physical parameters e.g. temperature 7' and density n, through ¢,

and

- particle microscopic variables: velocity {v} (and, possibly, position {x}).

For a given (any) specific dynamical problem, one should solve (if analytically
possible) the equations of motion (3.6), substitute the solution in expression
(3.36) for the correlation matrix and then evaluate the resulting quantities in
an appropriate reference frame. This is exactly the procedure we shall later
follow in the specific case of magnetized plasma.

3.5 Projection-operator approach

It seems appropriate to point out that the formalism presented here is essentially
based on the projection:

P- = OR /dFR
where og is the reservoir distribution function (d.f.). Notice that:
P’ =P

Therefore, what we have done, basically, above was to construct the test-particle
reduced d.f. f by applying this operator on the complete (o + R) d.f. D:

PD ZURf

and then derive a kinetic equation in terms of f = 0';{1 P D. Following an idea
suggested in the past [124], the kinetic equation could have been obtained by
defining a pair of complementary projections, say P and () = I — P, and then
deriving a pair of equations of evolution of P D and @ D in time.

The idea has been rigorously formulated in order to describe the relaxation
of a small sub-system weakly-interacting with a large heat-bath (i.e. our system)
in [68], [110] and a thorough formal study has been carried out in [46], as well as
a series of subsequent works (see e.g. [113] and references therein). We will not
go into details here. Nevertheless, let us point out that the kinetic equations
derived in the following (two) chapters coincide formally with the ones discussed
in [46], for systems described by a free-Liouvillian with a discrete spectrum
of eigenvalues, and actually represent the explicit construction of the kinetic
operator(s) studied in [68] from a dynamical point of view.

3.6 Conclusions

Based on microscopic particle dynamics, we have presented a general formalism,
decsribing the evolution in time of the distribution function of a test-particle
weakly interacting with a large heat bath in homogeneous equilibrium when



60 Kinetic Theory for a Test - Particle in Magnetized Plasma

an external force field is present. This method, which is actually valid for
any particular dynamical problem (provided that an explicit solution of the
dynamical problem is given), takes into account the existence of long-range
interactions and the field, as the latter may strongly modify particle trajectories
between collisions.



Chapter 4

Kinetic equation in a
pseudo-markovian
approximation:

the ©—operator

Summary

Based on the Generalized Master Equation obtained in the previous Chapter, we
adopt a widely used ‘markovian’ approximation. Evaluating the kernel along the
particle’s trajectories (taking into account the dynamical problem, in general), a
Fokker-Planck-type (FP) partial derivative equation is thus obtained. We show
that this equation does not preserve the positivity of the distribution function
f(x,v; t). This problem does not appear in the case of a uniform system.

There is a goal but where is a way?
What we call the way might only be wavering...

Frantz Kafka
in The Castle
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4.1 Introduction

In the previous chapter, we derived a non-Markovian master equation. In order
to obtain a closed equation for f(t), we should now express f(t —7) in the M E.
As we have already said, this formal task is very delicate to handle, since the
details of the dynamic problem (in the presence of interactions and the field)
have to be taken into account.

Various ‘markovianization’ procedures have been proposed in the past. One
of them is defined and then constructed in the following. Even though the
result of this approach will be shown to be mathematically unacceptable, its
description is provided here, in order to set some definitions and fix the ideas
underlying what will follow.

4.2 A ‘Markovian’ approximation:
the ©-operator

The collision term derived so far is valid up to second order in the interaction.
Remember that the free problem of motion was formally solved (to zeroth -
order, i.e. for a particle alone). Since interactions were assumed to be weak,
corrections to the particle’s free trajectory are expected to be of order A or
higher. Therefore, they might be expected not to influence the collision term
(to second order), since they may only interfere in higher orders. We may
therefore assume that substituting with the zeroth-order solution of the problem
of motion, i.e. setting

flt=71)me 7 f(t) = UV (=7) f(t)

should suffice in this order.

Furthermore, as in the vast majority of relevant kinetic studies, one is essen-
tially interested in the asymptotic form of the kernel of the master equation, i.e.
for times larger than the typical time scale characterizing the kernel'. The stan-
dard method therefore cousists in considering the asymptotic limit, by taking
the upper time-integration boundary ¢ to tend to infinity. One thus essentially
expects to obtain a linear kinetic equation with time-independent coefficients.

This formalism defines the realisation (to order A?) of a specific kinetic evo-
lution operator, referred to as ‘the ©-operator’ (we borrow the notation used in
[46], [68]. In this chapter, it will be constructed in the general case. It will be
explicitly adapted to electrostatic plasma, in a subsequent section.

Tt is only recently that attention was paid to the derivation of time-dependent (‘running’)
diffusion coefficients, related to studies of space-diffusion problems; see e.g. in [7].
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4.2.1 A ‘quasi-Markovian’ (()M) master equation

Substituting f(t — 7) = U®)(—7) f(t) and taking t — oo in (3.27), one obtains
the quasi-markovian master equation:

oOf —Lof = nw /0 - dr /F dX1 Loy UO(7) Loy U (=7) qﬁg’;(vl) f(X;t)

/OOO dr k() f(X) = Os(t) f (4.1)

A summation over particle species (populations) «' is understood where appro-
priate (namely applicable in the study of plasma). Note that the propagator
U is actually the product Uc(ro) Ul(o); remember that Ul(o) leaves ¢, unchanged.
This relation is the realisation, to order ~ A?, of the © operator.

Note that the rhs of the above master equation can be expressed? as the
velocity derivative of a ‘probability current’ J:

Of —Lof = (;iv {n/OOO dT/del dvq U(O)(T) Lsy U(O)(—T) Peq(v1) f
0
= 8—VJ(X,V) (4.2)

4.3 Evaluation of the kernel in the QM master
equation

In order to evaluate the kernel in (4.1) we need to recall definitions (3.15),
(3.16) of the Liouville operators in the collision term, as well as property (3.24).
Particular attention will be paid in the evaluation of the action of the propagator
on the velocity gradients appearing in the collision term.

4.3.1 Generalized gradients in ['-space

Any function of the dynamical variables {x, v} has to be evaluated along trajec-
tories in phase space, that is taking into account the external field. We should
point out that:

U(t) does not commute with I'-space gradients 2, 2.
Indeed, applying the principle of (3.24) and combining with the solution (3.6)
of the problem of motion, one may show that:

0 0

— 17(0) O_pn — NI L 1T
Dv, (1) = UO(t) aViU (—t) N (1) I + N'{ (t) v;
0 0
— O % oy — T 1T - R
Dx, (t) = UO(t) aXiU (—t) M () . + M/ (t) v; i=o, 1
(4.3)

2To see this, recall (3.16) and use: fdvl %~ =0, fdvl a%- = % fdv1~ =.
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The detailed calculation is provided in Appendix B. At the initial instant ¢:

0 Dx;(0) 0

- aVi ’ i - axi

DVi (0)

Notice that, if one takes M = I (as in §3.1.1-(i) and (iii) above) the second
relation reduces to:

0
DXi (t) - axi
Obviously, for a homogeneous function ¢:
0
Dy, (1) o(v1) = N (1) 22
Vi

Since we shall focus on magnetized plasma, in the following, let us mention
that a formal study of the generator of charged-particle motion in the presence
of external fields, in particular, exists in [82]. The above considerations, and
specifically relations (4.3), are in full agreement with this reference, where rela-
tion (4.3a) appears just as it stands®, yet derived in a different, formal manner.
Notice that the propagator formalism as presented here has also been involved
in quasi-linear theories for plasma turbulence; see e.g. [83].

4.4 The ‘Quasi-markovian’ Fokker-Planck
equation (QM-FPE)

4.4.1 QM-FPE in the general case

In general, the distribution function f depends on particle velocity and position:
f = f(x,v;t). We then obtain a 2nd-order partial-differential equation (pde) of
the form:

of of 1 af 0 0

0
e + Va_x + EFeXta_V = O_V[Aa_v + Ga_x + Ma] f (4.4)

where p denotes the mass ratio: p = m/mf". The exact form of the velocity-
and the cross-velocity-position- diffusion matrices A will be given below.
Notice that
0 0 0? 0 04

a_lli ZJ% T (')vi(')vj (AZJ ) B Bvi c')vj )

Also,
0] o 0 0 0G;;

O_wG”(')_x] o Oviaxj (Gij ) B Bvi E)x]— )

3Notice, however, that the formulae in [82] refer to an electron plasma, and Q < 0 therein,
hence the difference in signs within the plasma dynamical matrices defined in §3.1.1-(iii).
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Therefore, equation (4.4) takes the form of a diffusion equation in phase space:

or ,of [ lp Of _ 09 e 9 se
E"‘Va—X‘FE exta—v—aqaq-(D f) aq(}— f) (4.5)

where q = (x, v) is the position vector in I"-space. Therefore, in a d-dimensional

problem (d = 1,2, 3), q consists of d position and d velocity variables: q € 24,

Obviously, this equation will be a 2d+1-variable* ‘Fokker-Planck-type equation.
The diffusion matriz D is:

DO(x,v) = < ;G %ET ) (4.6)

The 2d-dimensional vector F© has the form: F® = (0,F)T, where the d-
dimensional vector F accounts for dynamical friction suffered by a moving par-
ticle due to the presence of surrounding ones. In general, it is defined by:

0Ai;  0G;;

Fy = —pa;
¢ 'uaz—}_ 87.1]' 83?]'

i,j=1,2,3 (4.7)

In a variety of problems, though, A, G only depend on velocity, so the last term
cancels.

4.4.2 QM-FPE in the homogeneous case

Let us now consider the special case where the system is in a uniform state:
f = f(v; t). By the same procedure, we obtain an equation of the form:

or , 1 Ai + pal f (4.8)

of 0
o TmFetay = oy Agy

where y again denotes the mass ratio: p = m/mg’ .

Carrying out an algebraic manipulation, as described in the previous para-
graph, the rhs can be cast in the form of a ‘Landau-Fokker-Planck-type equation
[3]:

of 1 of 0 0 0

= —Fext— = ——(F; —— (A 4.9

ot +m tov avi( zf)+8w8vj( i f) (4.9)
All coefficients (to be defined below) are the same as in the general case.

If the coefficients on the rhs (and Fext) are independent of position® x, the
same result is obtained by considering a space-averaged distribution function
f(v; t) = [dx f(x,v; t). In that case, integrating equation (4.4) (or (4.5)) over
space, one readily recovers (4.8) (or (4.9), respectively).

4i.e. including time t.

5This is exactly the case in our systems of interest here: magnetized plasma and free
motion. Nevertheless, this is not true in the linear oscillator case (mentioned above).
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4.4.3 Coefficients

The coefficients in (4.4), functions of {x, v} in general, are given by:

(a6 = & /0 T / dxa / vy Geg(v1)
Fint (Jx — X1]) ® Fine (jx(=7) — x1(—=7)|) (N'"" (r), N (7))

1 007' x,vit,t — ) (N'" (), NT(r
7 | drClevitt—n) (N7 (), N (r)

—12/ dT/dxl/dvl
m=Jo

a =
Op(v
P (b = 511) & Fiae((x(=r) =32 (-r)) V'] () 2501
1 o0
= _W/o drd(x,v;t,t — 1) (4.10)
(a ® a denotes the tensor product i.e. (a® a);; = a;q; Va € R9).
In a single species system one may prove that:
a; = —8Aij/8vj (411)
(the proof is provided below) so that the drift vector F defined above becomes:
A
Fi=1+np) 94y i,j=1,2,..d (4.12)
87.1]'

(we have assumed that 0{A4;;,G;;}/0x; = 0, as discussed before).

Notice the explicit appearance of the Kubo coefficients for the interactions
[7], [25] in the above expressions, as well as the dependence on the external force
field through the N(¢), N'(¢) matrices (and - implicitly - through F(x(¢)), which
are to be evaluated along particle trajectories).

The above formulae provide a ‘recipe’ relating diffusion coefficients to the
(interaction) force auto-correlations. In studies based on stochastic calculus,
this is often done via phenomenology, usually considering a white noise (i.e. a
0-correlated process) which is assumed to represent (and, rather instead, hides)
information provided by the microscopic collision mechanism.

Proof of (4.11). From (4.10b):

n [ 0¢
ai:—mfo dT/XmfdvlFiFkN{jkav—lj

where, obviously, F; = Fi(t), Fi = Fi(t —7) and Ny, = N{{j(r) After an
integration by parts:

n [ 9
a; :+W/Ov dT/dxl/dV:l(z)a’U—ljFiFk N{Jk
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Now, recall that the quantity to the right of the velocity derivative is a function
of g = v — v; for a single component plasma, as shown in §3.4; therefore, we
can set:
o 90 0
a’Ulj - 8gj - ij

and the derivative can be carried outside the integration. The remaining quan-
tity is precisely the rhs of (4.10a) (defining A;;):

a; = 9 i/ dT/dxlde1¢FiFkN{jk:_a :
o 81;]—

Ov; m?

4.5 Mathematical properties of the QM - FPE

A kinetic equation should possess a number of properties; namely, it should
preserve

(i) the reality,

(i) the normalization
and

(iii) the positivity of the (probability) distribution function.

Furthermore,

(iv) an H-theorem should be satisfied, ensuring entropy growth as the systems
approaches an equilibrium state [41].

These requirements define a Markov semi-group [13], [113], [52].

Let us examine these requirements, briefly.

The first requirement is readily met, since all coefficients in the evolution
equation are real. Indeed, if the imaginary part of the function f is null at t = 0,
it is trivial to show that it will remain so at all times £.

The second, actually ensuring particle number conservation, one can be eas-
ily verified, by checking that the integration of the collision term over I'-space
gives zero®.

The fourth one, somewhat more ‘delicate’, will be studied in a separate
section.

Let us focus on the third requirement. In order for the probability distribu-
tion to be positive at any instant ¢ under the action of the evolution operator
O(t), the diffusion matrix D should be positive definite [13], i.e. one should
have, for any” a € ®2¢ :

(a,Da) =a’Da=a’D%Y"a > 0 (4.13)

This criterion is definitely not satisfied here: notice that det D® = —(detC)? <
0. As a consequence, the Quasi-Markovian F.P. equation (4.4) does not guar-
antee the preservation of the positivity of the probability d.f. f.

6Recall the form (4.2) of the equation; also that f dq % =0 - see above.
7Once more, d is the dimensionality of the physical space considered.
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In fact, the forementioned problem is in principle absent from the homo-
geneous d.f. case® i.e. when f = f(v). Therefore, the problem of positivity
preservation has not been stressed in the past since the effect of spatial inhomo-
geneity of the system on the collision term has often been neglected, through
one argument or another, or even plainly omitted (as discussed in the Intro-
duction). Inhomogeneity effects in the collision term have been counsidered in
certain works, yet the second (cross-V-X) term in the rhs of eq.(4.4) has always
been neglected, often by assuming on physical grounds that it is negligible (see
the discussion about the “hydrodynamic approzimation” in § 18.4 in [4]; also in
§ VIIL.6 in [41]).

This problem was pointed out in the quantum theory of open systems [57]
and was later examined with respect to classical systems; see in particular [46],
[68]. These authors used formal operator methods to show that the problem
was due to the very construction of the kinetic equation and actually suggested
a possible solution, for systems with a discrete spectrum of the zeroth-order
Liouville operator. That formalism will be adopted here (as applied to an elec-
trostatic plasma).

4.6 A qualitative paradigm: stochastic acceler-
ation in 1d

We have drawn the conclusion that the Fokker-Planck-type equation obtained
in the usual pseudo-‘Markovian’ approximation (i.e. (4.4)) is incorrect, as d.f.
positivity is not preserved in time. Indeed, the solution of equations of the
form of (4.4) is ill-defined, as may be verified numerically for a given system.
This point can be illustrated by the simple example of a Fokker-Planck-type
equation with constant coeflicients. Consider, for instance, a particle subject to
a (white noise) stochastic acceleration in one dimension. The usual ‘markovian’
approximation leads to the equation?:

Of + vl f =dO?f +¢0,0, f (4.14)
where all coefficients are constant (¢,d € ). At a first step, let us set ¢ = 0:
Of + vl f =doif (4.15)

Considering the Fourier transform of f(z,v;t), one may solve the associated
PDE in Fourier space and then integrate to obtain a solution in terms of a
Green function G(z,z’,v,v';t), for a given initial distribution f(z,v;0) [42].

8Rigorously speaking, of course, this should result from the velocity-diffusion matrix A
being a positive definite matrix itself. Whether this is the case, should be checked in the
particular problem considered. The relevant confirmation for magnetized plasma will be given
where appropriate.

9See also [47], where an equation of 4.14 describing stochastic acceleration is obtained
and discussed, in the context of electrostatic turbulence (coefficients therein are not constant,
though).
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For a §—function initial distribution in phase space, one thus obtains an explicit
solution for f(x,v;t), which is easily shown to be positive at all times ¢ > 0.

Now let us set ¢ # 0, recovering the cross-V-X diffusion term ¢ 9, 9, f in the
rhs of the above equation, which now becomes:

o= (5) (o 0) (50) 7

One thus introduces a 2d-‘diffusion’ matrix which yields two eigenvalues of op-
posite signs. Contrary to the ‘correct’ FPE 4.15, equation (4.14) in general has
no probability solution, since the second-order coefficient matrix is not positive.
Indeed, as one may check analytically, the corresponding Green function devel-
ops a singularity at some instant of time!®. The details of this calculation will
be omitted here, yet the method is discussed in a forthcoming chapter in detail
(see ch. 10).

10What happens, exactly, is that one comes up with integrals of the form
foo dk eiAz ¢=B(1)2® where B(t) becomes negative for certain values of .

— o0
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Chapter 5

A Markovian kinetic
operator - construction of
the d—operator

Summary

In search for a correct Markovian approximation, we consider a modified colli-
sion operator (referred to as the ‘®-operator’). A modified kinetic equation is
obtained, taking into account the external field. The result of this calculation
is valid for any specific dynamical problem (assuming that an exact solution is
known).

I accept no principles of physics
which are not also accepted in mathematics ...

René Déscartes
in Principles of Philosophy
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