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We present the first nonperturbative calculations of the nonrelativistic hydrogen spectrum as predicted
by first-quantized nonlinear Maxwell-Born-Infeld electrodynamics with point charges. Judged against
empirical data our results significantly restrict the range of viable values of the new electromagnetic
constant � introduced by Born. We assess Born’s own proposal for the value of �.
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In the 20 years since its rediscovery in the 26-
dimensional bosonic string theory study by Fradkin and
Tseytlin [1], the nonlinear electromagnetic field theory
proposed by Born and Infeld [2] has been experiencing
an astonishing renaissance. Recent surveys are located in
[3,4]. Most investigations since [1] have been conducted
from the perspective of the high energy community and
involve higher-dimensional versions of the Born-Infeld
theory [as in [1,5] ] and/or noncommutative analogs of it
[as in [6] ]. Inevitably this has rekindled the interest in the
original four-dimensional theory, the subject of this Letter.

We recall that Born’s agenda [7] was to rid (early) QED
from its ultraviolet divergencies by quantizing self-
regularizing nonlinear classical field equations. It was
noted already in [7] that the nonlinear Maxwell-Born-
Infeld field equations [8] do not lead to the infinite self-
energy problems of a point charge which occur with the
linear Maxwell-Lorentz field equations, but the nonlinear-
ity made it difficult to proceed. With the spectacular quan-
titative successes of renormalized QED since the late
1940s, Born’s original motivation became obsolete, or so
it would seem. However, as emphasized by Weinberg [9],
more than half a century later standard QED is still in need
of extrinsic mathematical regularizers to overcome the
infinite self-energy problems of a point charge that have
been inherited, in a sense, from the classical Maxwell-
Lorentz electrodynamics. In view of this, Born’s sugges-
tion [7] to pursue some intrinsically self-regularizing non-
linear electromagnetic field theory reads as contemporary
as it did in the 1930s; the rediscovery of Born-Infeld type
Lagrangians in string theory, which could hardly have been
foreseen by its founders, makes Born’s suggestion all the
more prophetic.

The avoidance of infinite self-energies, as well as some
other conceptual items [10], are greatly to the theory’s
credit but surprisingly little is known about the empirical
validity of the Born-Infeld theory. While the theory does
not seem to have problems at the classical level [11,12] it
remains to be seen whether it will live up to its expectations
at the quantum level.

In this vein, a very natural question to ask is the follow-
ing: what (detectable) effects does a hypothetical Born-
06=96(3)=030402(4)$23.00 03040
Infeld nonlinearity of the electromagnetic fields have on
the atomic spectra? This question should have been an-
swered long ago. It was not, presumably because the
nonlinearity of the field equations causes ‘‘difficulties
�. . .� with the passage to the quantum theory, which appear
to be insoluble with present methods of quantization’’ [13]
(p. 32), and by 1969 ‘‘[t]he adaption �. . .� to the principles
of quantum theory and the introduction of the spin ha[d]
�. . .� met with no success’’ [14] (p. 375). As long as this
situation prevails, one has to settle for quantum mechanical
computations of spectral data in which Born-Infeld effects
can be incorporated through the classical fields.

Unfortunately, because the complicated nonlinearity of
the field equations has stood in the way of finding relevant
solutions with two or more point charges, all previous
attempts to compute such quantum mechanical spectra
[15–17], have been foiled. In [15] the electron is treated
as a test particle in the known [see [7] ] Maxwell-Born-
Infeld field of a point nucleus to compute hydrogenlike
Schrödinger spectra to first order in perturbation theory;
however, as we will see in this Letter, test particle theory is
misleading for Born-Infeld equations. In [16,17], which
have become standard references [see the introductions in
[18,19] ], Dirac spectra are computed without recourse to
test particle theory (albeit with other approximations which
are not of concern here), defining the interaction energy as
difference of the electrostatic field energy integrals for the
bound versus the free configurations. However, the authors
of [16,17], who use Coulomb’s solution DC of the dis-
placement field equation r �D � 4�� with a charge den-
sity � comprising a single spectral electron and a spheri-
cally symmetric nucleus of charge z and a Thomas-Fermi
cloud for the remaining z� 1 electrons, fail to realize that
the nonlinear Born-Infeld law for the electromagnetic vac-
uum maps this Coulomb field DC into an electric field
EFGRS � F BI�DC� which is not identically curl free [20];
more precisely, r�F BI�DC� � 0 almost everywhere, in-
validating the spectral results of [16,17].

Recently, a consistent first quantization of the nonlinear
Maxwell-Born-Infeld field equations with point charges
was achieved using the electromagnetic potentials [21].
Moreover, an explicit integral formula for the electron’s
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electrostatic potential in certain proton-electron configura-
tions (treated as point charges) was derived; this integral
formula is readily extended to nuclear charges z > 1 (see
below). Thus the stage has been set for a systematic inves-
tigation of the simplest atomic and ionic spectra, the hydro-
genlike ones.

In order to keep technical matters as simple as possible,
here we only address the nonrelativistic Schrödinger equa-
tion of a spinless electron bound to an infinitely massive
point nucleus. We plan to deal with the fine details con-
tributed by relativity, spin, and the finite mass and size of
the nucleus elsewhere. Furthermore, detailed evaluations
of the interactions and the eigenvalues are carried out only
for the hydrogen atom (z � 1); the details of hydrogenlike
interactions and ionic spectra for nuclear charges z > 1 are
beyond the scope of this Letter.

In units of @ for both action and magnitude of angular
momentum, elementary charge e for charge, electron rest
mass me for mass, speed of light c for velocity, and Comp-
ton wavelength of the electron �C�@=mec for both length
and time, a hydrogenlike spectrum is determined by the
following dimensionless stationary Schrödinger equation
on the electron’s configuration space [21],

�1
2r

2
e �se� � ����se� �se� � E �se�; (1)

where se is the electron’s generic configuration space
coordinate and the subscript e on r2

e indicates differentia-
tion with respect to se. The fine structure constant � 	
e2=@c 
 1=137:036 is the dimensionless electromagnetic
coupling constant for the dimensionless total electrostatic
potential �� defined below. The positive parameter � is
Born’s electromagnetic vacuum constant (‘‘aether con-
stant’’ for short) [22], which enters through the Born-
Infeld aether law, relating E (and H) with D (and B).
Born [7] argued that � � �B with

�B 
 1:2361�: (2)

Our spectral results allow us to assess the viability of (2)
and Born’s reasoning for it.

The total electrostatic potential ���s� at the actual space
point s is determined by the electrostatic Maxwell-Born-
Infeld equation r �F�1

BI ��r��� � 4�� with � consist-
ing of one positive and one negative point charge with
values z and �1 at generic positions sn and se, respec-
tively; explicitly,

�r �
r���s�������������������������������������

1� �4jr���s�j
2

q � 4��z�sn�s� � �se�s��; (3)

with the asymptotic condition that ���s� ! 0 for jsj ! 1.
The solution of (3) depends on s as variable and on sn and
se as parameters; we sometimes emphasize this by writing
���sjsn; se�. While no explicit formula for ���sjsn; se� is
known, (1) reveals that we need only ���sejsn; se�. Fortu-
nately, althoughr�F BI�DC�s�� � 0 for almost every s in
space, we do have r�F BI�DC�s�� � 0 for all s on the
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straight line through the point charges [this result general-
izes to the vanishing of r�F BI�DC�s�� on the straight
line through the respective centers of any two spherically
symmetric charge distributions]. Hence, an electrostatic
potential function ��s� solving (3) for space points s on
that line can be computed through the line integral ��s� �R
1
s F BI�DC�s

0�� � ds0. Assuming D � DC in leading order
in �, on this line we can approximately set ��s� � ���s�.
For z > 1 the integral is formidable, but when the nucleus
is a proton (z � 1 and sn � sp), the integral can be recast
into the more manageable form [21]

���sejsp; se� �
1

�

Z 1
2
��
2
p
�=r

f0�y���������������
1� x4
p dx; (4)

where r � jsp � sej, xy � �=r, and f0 is the derivative of

f�y� �

���������������������������������������
1
4� y

2 � y
��������������
1� y2

qr
: (5)

For the remainder of this Letter, z � 1.
A look at the integral (4) makes it plain that

����sejsp; se� depends on sp, se, and � only through
the combination jsp � sej=�; hence, ����sejsp; se� �:

W�r=�� is a function of r=�. And while W does not
seem to be expressible in terms of known functions, (4)
lends itself readily to an analysis when the electron is far
from, respectively, near the proton. Note that ‘‘far’’ and
‘‘near’’ are relative to �.

If the electron is far from the nucleus, i.e., if r � 2
���
2
p
�,

then W�r=�� can be expanded in an asymptotic series in
powers of �=r so that asymptotically exact to four orders
as r! 1

W�r=�� �
X3

k�0

bk��=r�k � o���=r�3�; (6)

with b0 � �
1
4B�

1
4 ;

1
4�, b1 � 1, b2 �

3
4B�

3
4 ;

3
4�, and b3 � 2,

where B�:; :� is Euler’s Beta function. Equation (6) reveals
three important results. First, when r! 1 the electric
potential at the location of the electron, ���se�, converges
to the finite electron self-potential in Born-Infeld theory,
defined by setting s � se in Born’s solution

����B �sjse� � �
1

�

Z 1
js�sej=�

dx��������������
1� x4
p (7)

for the electrostatic potential at s generated by a single
(negative) unit point charge at se [7] [NB: (7) solves (3)
when z � 0]. We recall [7]: there is no short distance
Coulomb singularity of the single particle potential in
Born-Infeld theory. Second, to leading order for large
separation of electron and proton, the potential ���se�

varies with r reciprocally; i.e., we recover Coulomb’s
law for the pair potential from the nonlinear field equation
(3). Third, there are higher order corrections to Coulomb’s
law. Indeed, when the electron is near the nucleus, devia-
tions from Coulomb’s law become significant. More pre-
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cisely, for r < 2
���
2
p
�, the function W�r=�� can be ex-

panded into a Taylor series in powers of r=�,

W�r=�� �
X1
k�0

ak�r=��4k�1 (8)

with explicitly computable expansion coefficients ak. The
first four of them read as follows: a0 � �1=2, a1 �
3=40� 3�=138, a2 � �29=672� 225�=16384, and
a3 � 1667=54912� 20265�=2 097 152. Note, in particu-
lar, that W�0� � 0: there is no short distance Coulomb
singularity of the pair potential in Born-Infeld theory [21].

Our discussion of �� supplies all the information we
need to solve the Schrödinger equation (1). To facilitate the
comparison with the familiar Schrödinger equation for the
Coulomb interaction, we write the eigenvalues as E � �

� �

1
4B�

1
4 ;

1
4� � " and the total potential as ���se� � �

1
� �

1
4B�

1
4 ;

1
4� �

Z�r=��
r , where Z�r=�� is the effective Coulomb

charge of the proton ‘‘seen’’ from a distance r. The self-
potential terms on left- and right-hand side of (1) then
cancel out, leaving us to solve

�
1

2
r2
e �se� � �

Z�r=��
r

 �se� � " �se�: (9)

The Born-Infeld Schrödinger and the Coulomb
Schrödinger potentials are compared in Fig. 1.

Our first important spectral result states that the
Coulomb limit �! 0 of Eq. (9) exists. In this case,
Z�r=�� ! 1 for all r > 0, which follows from (4) [21].
Hence, in the limit �! 0 the spectrum of (9) converges to
the familiar Rydberg law, i.e.,

"�0�n;‘;m � �
1

2n2 �
2; n � 1; 2; . . . ; (10)

where n � 1; 2; 3; . . . and ‘ � 0; 1; . . . ; n� 1 and m �
�‘; . . . ; 0; . . . ; ‘ are the usual main, secondary, and mag-
netic quantum numbers. As is well known, ‘ and m do not
contribute to the energy eigenvalues "�0�n;‘;m, so that n2 of
them coincide; we recall that this high degeneracy is due to
the O�4� invariance of (9) when � � 0.

For all 0<�<1, theO�4� invariance is broken and the
energy eigenvalues "���n;‘;m in general display only the 2‘�
1-fold degeneracy corresponding to the manifest O�3�
FIG. 1. ���=r�Z�r=�� and ��=r vs r=�.
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invariance of (9); i.e., "���n;‘;m does not depend on the quan-
tum number m. The O�3� symmetry allows us to treat (9)
by the usual separation of variables. Shifting the origin of
space to sp, the electron-proton distance r becomes the
radial variable of standard spherical coordinates r; #; ’. In
these coordinates the eigen-wave functions take the form
 ���n;‘;m�se� � R���n;‘�r�Y

m
‘ �#;’�, where the Ym‘ �#;’� are

spherical harmonics, and the R���n;‘�r� satisfy the Sturm-
Liouville problem

�r2R0�0 � �‘�‘� 1� � 2�rZ�r=�� � 2"r2�R � 0 (11)

for
R
1
0 r

2R2�r�dr <1. We solved this radial problem by
standard shooting technique, using MAPLE’s Runge-Kutta-
Fehlberg45 method.

It is instructive to discuss first the dependence of the
ground state energy "0��� 	 "���1;0;0 on �. In Fig. 2 we
display our numerically computed values of "0��� for a
selection of � values versus �, together with semiexplicit
upper and lower bounds on "0���, computed analytically
except for numerical quadratures.

There are several remarkable features visible in Fig. 2.
First of all, there are two values of � at which the ground
state energy "0��� coincides with the familiar Coulomb
value ��2=2. Thus there are two regimes where the Born-
Infeld theory yields a binding (or ionization) energy
[�"0���] compatible with the empirical data: a perturba-
tive one near� � 0 (the obvious one, as already noted) and
a highly nonobvious and nonperturbative regime near � 

1:83297=�. Too far away from these two values, the bind-
ing energy would be either unrealistically large or small.
Between these two � values, the binding energy is en-
hanced compared to �2=2, reaching a maximum at about
� 
 0:24774=�, while to the right of � 
 1:83297=�, the
binding energy is diminished, converging to zero as �!
1. We remark that our semiexplicit upper and lower
bounds allow us to rigorously prove this nonmonotonic
behavior of the binding energy.

We emphasize that the nonmonotonic behavior of "0���
is a quite nontrivial result; in particular, there is no hint of it
FIG. 2. "0=�2 vs ��.
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when the electron is treated (in ‘‘first approximation’’) as a
test particle which ‘‘feels’’ only the proton’s electrostatic
potential computed from the Born-Infeld equations with a
single point source, neglecting the electron’s own feedback
[15]; i.e., ���se� 	 ���sejsp; se� in (9) is replaced by
Born’s [7] solution for a positive point charge,
����B �sejsp� � ��

���
B �spjse�. For r large, ����B �sejsp� 

1=r, too. But since
��������������
1� x4
p

> x2, it follows from (7) that
����B �sejsp�< 1=r, so test particle theory predicts a dimin-
ished binding energy for all �.

For a judicious selection of � values we computed
several higher eigenvalues. Of particular interest are
Born’s value (2) and the value � 
 1:83297=� where the
binding energy coincides with the Coulomb value �2=2 at
� � 0. From Table I and Fig. 2 we are able to delineate the
physically viable range of � values. By inspecting the
excited energies, we can immediately rule out � 

1:83297=�, and by continuity also its neighborhood.
That leaves only the perturbative regime of sufficiently
small �. But how small is ‘‘sufficiently small’’? In par-
ticular, is �B ‘‘small enough’’?

The second row in Table I lists spectral data for� � �B.
Note that �"0��B�=�2 deviates from �"0�0�=�2 � 1=2
(first row) by 1:6� 10�4, and from the empirical data even
by 4:3� 10�4. Of course, �"0�0�=�2 differs itself from
the empirical data by 2:7� 10�4, but as is well known,
after correcting �"0�0�=�2 for the finite mass of the pro-
ton, the difference to the empirical data reduces to only
�3:14� 10�6, and the agreement improves even more
with relativistic corrections. It is therefore to be expected
that even after correcting�"0��B�=�

2 for the finite proton
mass and relativistic effects, the difference to empirical
data will remain at about 10�4.

Even more dramatic is the splitting of 0:066�2 between
the 2s and 2p energies computed with (2), which is a factor
104 bigger than the 2p3=2 � 2p1=2 ‘‘fine structure’’ splitting
(which is not even visible at the level of precision in our
table). Hence, even from the spectrum of the simplest atom
we conclude that Born’s value (2) is not physically viable.

Pending verification of our results through a more re-
fined treatment, viable values of�, as far as spectral results
go, must be much smaller than �. We plan to study just
TABLE 1. Listed in the table below are the energies of the
ground, the first excited s, and the first p states for these �
values, as well as the corresponding empirical data [23]. We
display �� rather than �, and �"=�2 rather than "; also, we
suppress the magnetic quantum number m.

�� �"���1;0=�
2 �"���2;0=�

2 �"���2;1=�
2

0.0000 0.50000 0.12500 0.12500
6:6� 10�5 0.50016 0.12502 0.19101
1.83297 0.50000 0.19766 0.36737
Empirical 0.49973 0.12493 0.12493
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how small � must be using a relativistic theory with spin.
But would the elimination of (2) not be a bearer of bad
tidings for the Born-Infeld theory? Not yet. Born did not
use detectable energy differences to compute (2) but equa-
ted the static field energy of a point charge to the electron’s
empirical rest energy, which yields

1

4�

�

�4

Z
�
������������������������������
1� �4jr�Bj

2
q

�1 � 1�d3s � 1 (12)

in our units of mec
2 � 1. The integral equals �

�
1
6 B�14 ;

1
4�,

giving (2). Unless (12) can be tied to a dynamical concept,
such as scattering of an electron, the elimination of (2) by
our spectral results is not bad news for the Born-Infeld
theory. But this clearly calls for a deeper inquiry.
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