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1 Basic formula for ring potential

Given a homogeneous, thin ring of radius r0 and mass m located at height z0 (in cylindrical
coordinates.) The ring’s plane is perpendicular to the z axis. Let

X := [r, z, r0, z0]

A(X ) :=
[
(r − r0)2 + (z − z0)2

]
/r20

= (r̄ − 1)2 + (z̄ − z̄0)2

with normalisations r̄ := r/r0 and z̄ := z/r0.
Question: What is the resulting gravitational potential at r = (r, 0, z)?
Distance to ring element of length r0 dϕ located at r′:

|r− r′| =

∣∣∣∣∣∣
 r

0
z

−
 r0 cosϕ

r0 sinϕ
z0

∣∣∣∣∣∣ =
√
r2 − 2rr0 cosϕ+ r20 + (z − z0)2

Due to homogeneity, the ratio of mass element to ring’s total mass is

dm/m = dϕ/(2π) .

⇒ Φ(r0, r, z) = −
∫

ring

G dm

|r− r′|
= −Gm

2π

2π∫
0

dϕ√
r2 − 2rr0 cosϕ+ r20 + z2

= − Gm
2πr0

2π∫
0

dϕ√
r̄2 − 2r̄ cosϕ+ 1 + z̄2
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where z0 = 0 has been assumed without loss of generality.
If A(X ) 6= 0, this can be written as (remember cosϕ = 1− 2 sin2(ϕ/2)):

Φ(r0, r, z) = − Gm

r0
√
A(X )

×


1 : r = 0 ∨ r0 = 0

2

π
K

(
4r̄

A(X )

)
: else

where

K(k) :=

π/2∫
0

dϕ√
1 + k sin2 ϕ

≡ E
(√
−k
)

and E(·) is the complete elliptic integral of the first kind.
If A(X ) = 0, then (r, z) = (r0, z0), and the integral becomes

Gm

2
√

2πr0

2π∫
0

dϕ√
1− cosϕ

=
Gm

8πr0

π/2∫
0

dϕ

sinϕ
,

which diverges due to a singularity at ϕ = 0.

2 Potential of annular disk

To find the potential of a thin, annular disk with inner and outer radius aR and R (where
0 ≤ a < 1), we can just integrate the contributions from rings with r0 ∈ [aR,R].
Mass of a single ring (previously denoted by m) is dM = 2πr0 ∆r0∆z ρ. Mass ratio of
infinitisemal ring vs. complete disk (a = 0):

dM

M
=

2πr0 dr0 ∆z ρ

π R2 ∆z ρ
=

2r0 dr0
R2

Potential of thin disk with radius [aR,R] located at z0 = 0:

ΦD(r, z) =

R∫
r0=aR

dΦ(r0, r, z) = −GM
2π

R∫
aR

2r0
R2

2π∫
0

dϕ dr0√
r2 − 2rr0 cosϕ+ r20 + z2

= −GM
πR

1∫
a

2π∫
0

x dϕ dx√
r̄2 − 2r̄x cosϕ+ x2 + z̄2
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= −4 Φ0

π

1∫
a

x√
(r̄ − x)2 + z̄2

K

(
4 r̄x

(r̄ − x)2 + z̄2

)
dx

where x := r0/R, Φ0 := GM/R, and r̄ ≡ r/R and z̄ ≡ z/R are now normalised to the
outer radius R. For the remainder of this text, the bars will be dropped, implying that all
lengths are given in units of R. Likewise, potentials and angular velocities are normalized
to Φ0 and Ω0 :=

√
GM/R3.

Along the z axis, we have in particular

ΦD(0, z)

Φ0

= − 1

π

1∫
a

2π∫
0

x dϕ dx√
x2 + z2

= −2
[√

1 + z2 −
√
a+ z2

]
.

3 Potential balancing by rotation

Potentials of other physical origin can added linearly due to superposition. In particular,
if a point mass Mstar = µM is present at the origin, and one wishes the inner and outer
rim (at z = 0 and r ∈ {a, 1}) to have the same total potential

Φtot(r, z) := Φdisk(r, z) + Φstar(r, z) + Φrot(r, z)

= ΦD(r, z)− µ√
r2 + z2

− (Ω r)2

2
,

one can solve
Φtot(a, 0) = Φtot(1, 0)

for Ω, yielding

Ω =

√
2

1 + a

(
µ

a
+

ΦD(1, 0)− ΦD(a, 0)

1− a

)
.

4 Potential balancing by variable area density

As an alternative to rigid rotation, one can introduce a variable mass area density (mass
per area) σ(r) ≡ s(r) M/(πR2), such that s(r) is dimensionless. We consider a disk
partitioned into N concentric, plane-circular annuli with radial ranges [ri, ri+1], where
ri := [a+ (1− a)(i/N)]. (This is a linear mapping [0, N ] 7→ [a, 1]).
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4.1 Piecewise constant area density

If s(r) is equal to a constant si on each annuli, the gravitational potential at radius r
within the disk plane due to annulus i is

Φi(r) = −G
∫

ann.i

σi dA

|r− r′|
= −si

π

ri+1∫
ri

2π∫
0

x dϕ dx√
r2 − 2rx cosϕ+ x2

=: −si Li(r) .

We require the disk’s total potential (i.e. of all annuli combined) to be constant at each
ri+1/2 (at the middle of each annulus):

Φc
!

= Φtot(ri+1/2) = −
N−1∑
j=0

sj Lj(ri+1/2) ∀i

This is equivalent to the matrix equation Φcu = A s with

u := (−1, · · · ,−1)T

(A)ij := Lj(ri+1/2)

such that the components of s are found by inverting A:

s = Φc A−1 u =: Φc p

The normalisation factor Φc can be fixed by requiring

M(1− a2) !
=

N−1∑
i=0

(
M

πR2
si

)
π(r2i+1 − r2i ) ⇔ 1− a2 =

N−1∑
i=0

Φc pi(r
2
i+1 − r2i ) ,

finally leading to

si = pi (1− a2)

[
N−1∑
i=0

pi
(
r2i+1 − r2i

)]−1
.

It should be noted that this procedure can be used equally well to prescribe any other
values at any other radii, simply by changing vector u to hold the desired values, and
matrix A to be evaluated at the desired radii.
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4.2 Piecewise linear area density

We now wish s(r) to have values si at radii ri (i = 0, . . . , N) and be piecewise linear
(rather than constant) in between:

s(r) = ai + rbi ∀r ∈ [ri, ri+1]

with

ai =
si ri+1 − si+1 ri

ri+1 − ri
and bi =

si+1 − si
ri+1 − ri

.

The total potential is then

Φtot(r, z) = −
1∫
a

2π∫
0

s(x) x dϕ dx√
r2 − 2rx cosϕ+ x2 + z2

= −
N−1∑
i=0

ai Li(r, z) + bi Qi(r, z)

where

Li(r, z) :=
1

π

ri+1∫
ri

2π∫
0

x dϕ dx√
r2 − 2rx cosϕ+ x2 + z2

=
4

π

ri+1∫
ri

K

(
− 2rx

(r − x)2 + z2

)
x dx√

(r − x)2 + z2

Qi(r, z) :=
1

π

ri+1∫
ri

2π∫
0

x2 dϕ dx√
r2 − 2rx cosϕ+ x2 + z2

=
4

π

ri+1∫
ri

K

(
− 2rx

(r − x)2 + z2

)
x2 dx√

(r − x)2 + z2

The requirement of constant potential at the interfaces1 rj becomes

Φc
!

= Φtot(rj, 0) = −
N−1∑
i=0

(
si ri+1 − si+1 ri

ri+1 − ri

)
Li(rj, 0) +

(
si+1 − si
ri+1 − ri

)
Qi(rj, 0)

= −
N−1∑
i=0

(
ri+1Li(rj, 0)−Qi(rj, 0)

ri+1 − ri

)
si +

(
−riLi(rj, 0) +Qi(rj, 0)

ri+1 − ri

)
si+1

= −
N∑
i=0

(
ri+1Li(rj, 0)−Qi(rj, 0)

ri+1 − ri
+
−ri−1Li−1(rj, 0) +Qi−1(rj, 0)

ri − ri−1

)
si

1Since s(r) is now piecewise linear, N + 1 coefficients must be fixed, rather than just N as in the
picewise constant case. For this reason, the canonical choice for the radii at which to prescribe the
potential are the interfaces, not the annuli’s central radii.
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=: −
N∑
i=0

Bjisi = −(B s)j

or, in matrix notation,
Φc u = B s

where Li and Qi are identically zero for i ∈ {−1, N}. The remaining procedure is identical
to the one used in the piecewise constant case, except that the final normalisation is done
via

(1− a2)M !
=

R∫
aR

σ(r)
M

πR2
2π r dr

⇒ (1− a2) !
= 2

1∫
a

s(x) x dx = 2
N−1∑
i=0

ri+1∫
ri

(ai + xbi) x dx

= 2
N−1∑
i=0

[(
si ri+1 − si+1 ri

ri+1 − ri

)
r2i+1 − r2i

2
+

(
si+1 − si
ri+1 − ri

)
r3i+1 − r3i

3

]

=
Φc

3

N−1∑
i=0

(ri+1 − ri) [pi (2ri + ri+1) + pi+1 (ri + 2ri+1)]
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